Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru

Descripción del Articulo

Objective: To estimate an Integrated Autoregressive Moving Average model (ARIMA) for the analysis of series of COVID-19 cases, in Peru. Methods: The present study was based on a univariate time series analysis; The data used refer to the number of new accumulated cases of COVID-19 from March 6 to Ju...

Descripción completa

Detalles Bibliográficos
Autores: Cordova Sotomayor, Daniel Angel, Santa Maria Carlos, Flor Benigna
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Ricardo Palma
Repositorio:Revista URP - Revista de la Facultad de Medicina Humana
Lenguaje:español
inglés
OAI Identifier:oai:oai.revistas.urp.edu.pe:article/3307
Enlace del recurso:http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307
Nivel de acceso:acceso abierto
Materia:Forecasting
Pandemics
Coronavirus
id 2308-0531_1fb6967cbf2e41843007161cab9b8e1a
oai_identifier_str oai:oai.revistas.urp.edu.pe:article/3307
network_acronym_str 2308-0531
repository_id_str .
network_name_str Revista URP - Revista de la Facultad de Medicina Humana
spelling Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in PeruAplicación del Método Autorregresivo Integrado de Medias Móviles para el análisis de series de casos de COVID-19 en el PerúCordova Sotomayor, Daniel AngelSanta Maria Carlos, Flor BenignaForecastingPandemicsCoronavirusObjective: To estimate an Integrated Autoregressive Moving Average model (ARIMA) for the analysis of series of COVID-19 cases, in Peru. Methods: The present study was based on a univariate time series analysis; The data used refer to the number of new accumulated cases of COVID-19 from March 6 to June 11, 2020. For the analysis of the fit of the model, the autocorrelation coefficients (ACF), the unit root test of Augmented Dickey-Fuller (ADF), the Normalized Bayesian Information Criterion (Normalized BIC), the absolute mean percentage error (MAPE) and the Box-Ljung test. Results: The prognosis for COVID-19 cases, between June 12 and July 11, 2020 ranges from 220 596 to 429 790. Conclusions: The results obtained with the ARIMA model, compared with the observed data, show an adequate adjustment of the values; And although this model, easy to apply and interpret, does not simulate the exact behavior over time, it can be considered a simple and immediate tool to approximate the number of cases.Objetivo: Estimar un modelo Autorregresivo Integrado de Medias Móviles (ARIMA) para el análisis de series de casos de COVID-19, en Perú. Métodos: El presente estudio se basó en un análisis de series temporales univariante; los datos utilizados se refieren a la cantidad de casos nuevos acumulados de COVID-19 del 06 de marzo al 11 de junio de 2020. Para el análisis del ajuste del modelo se utilizaron los coeficientes de autocorrelación (ACF), el contraste de raíces unitarias de Dickey-Fuller Aumentado (ADF), el Criterio de Información Bayesiano Normalizado (BIC Normalizado), el error porcentual medio absoluto (MAPE) y el test de Box-Ljung. Resultados: El pronóstico de casos de COVID-19, entre el 12 de junio al 11 de julio de 2020 oscila entre 220 596 a 429 790. Conclusiones: Los resultados obtenidos con el modelo ARIMA, comparados con los datos observados, muestran un ajuste adecuado de los valores; y aunque este modelo, de fácil aplicación e interpretación, no simula el comportamiento exacto en el tiempo puede considerarse una herramienta simple e inmediata para aproximar el numero de casos.Universidad Ricardo Palma2020-12-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmltext/htmlapplication/pdfhttp://revistas.urp.edu.pe/index.php/RFMH/article/view/330710.25176/RFMH.v21i1.3307Revista de la Facultad de Medicina Humana; Vol 21 No 1 (2021): Revista de la Facultad de Medicina HumanaRevista de la Facultad de Medicina Humana; Vol. 21 Núm. 1 (2021): Revista de la Facultad de Medicina Humana2308-05311814-5469reponame:Revista URP - Revista de la Facultad de Medicina Humanainstname:Universidad Ricardo Palmainstacron:URPspaenghttp://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4410http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4379http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4451http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4514info:eu-repo/semantics/openAccess2021-06-02T16:10:27Zmail@mail.com -
dc.title.none.fl_str_mv Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru
Aplicación del Método Autorregresivo Integrado de Medias Móviles para el análisis de series de casos de COVID-19 en el Perú
title Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru
spellingShingle Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru
Cordova Sotomayor, Daniel Angel
Forecasting
Pandemics
Coronavirus
title_short Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru
title_full Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru
title_fullStr Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru
title_full_unstemmed Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru
title_sort Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru
dc.creator.none.fl_str_mv Cordova Sotomayor, Daniel Angel
Santa Maria Carlos, Flor Benigna
author Cordova Sotomayor, Daniel Angel
author_facet Cordova Sotomayor, Daniel Angel
Santa Maria Carlos, Flor Benigna
author_role author
author2 Santa Maria Carlos, Flor Benigna
author2_role author
dc.subject.none.fl_str_mv Forecasting
Pandemics
Coronavirus
topic Forecasting
Pandemics
Coronavirus
dc.description.none.fl_txt_mv Objective: To estimate an Integrated Autoregressive Moving Average model (ARIMA) for the analysis of series of COVID-19 cases, in Peru. Methods: The present study was based on a univariate time series analysis; The data used refer to the number of new accumulated cases of COVID-19 from March 6 to June 11, 2020. For the analysis of the fit of the model, the autocorrelation coefficients (ACF), the unit root test of Augmented Dickey-Fuller (ADF), the Normalized Bayesian Information Criterion (Normalized BIC), the absolute mean percentage error (MAPE) and the Box-Ljung test. Results: The prognosis for COVID-19 cases, between June 12 and July 11, 2020 ranges from 220 596 to 429 790. Conclusions: The results obtained with the ARIMA model, compared with the observed data, show an adequate adjustment of the values; And although this model, easy to apply and interpret, does not simulate the exact behavior over time, it can be considered a simple and immediate tool to approximate the number of cases.
Objetivo: Estimar un modelo Autorregresivo Integrado de Medias Móviles (ARIMA) para el análisis de series de casos de COVID-19, en Perú. Métodos: El presente estudio se basó en un análisis de series temporales univariante; los datos utilizados se refieren a la cantidad de casos nuevos acumulados de COVID-19 del 06 de marzo al 11 de junio de 2020. Para el análisis del ajuste del modelo se utilizaron los coeficientes de autocorrelación (ACF), el contraste de raíces unitarias de Dickey-Fuller Aumentado (ADF), el Criterio de Información Bayesiano Normalizado (BIC Normalizado), el error porcentual medio absoluto (MAPE) y el test de Box-Ljung. Resultados: El pronóstico de casos de COVID-19, entre el 12 de junio al 11 de julio de 2020 oscila entre 220 596 a 429 790. Conclusiones: Los resultados obtenidos con el modelo ARIMA, comparados con los datos observados, muestran un ajuste adecuado de los valores; y aunque este modelo, de fácil aplicación e interpretación, no simula el comportamiento exacto en el tiempo puede considerarse una herramienta simple e inmediata para aproximar el numero de casos.
description Objective: To estimate an Integrated Autoregressive Moving Average model (ARIMA) for the analysis of series of COVID-19 cases, in Peru. Methods: The present study was based on a univariate time series analysis; The data used refer to the number of new accumulated cases of COVID-19 from March 6 to June 11, 2020. For the analysis of the fit of the model, the autocorrelation coefficients (ACF), the unit root test of Augmented Dickey-Fuller (ADF), the Normalized Bayesian Information Criterion (Normalized BIC), the absolute mean percentage error (MAPE) and the Box-Ljung test. Results: The prognosis for COVID-19 cases, between June 12 and July 11, 2020 ranges from 220 596 to 429 790. Conclusions: The results obtained with the ARIMA model, compared with the observed data, show an adequate adjustment of the values; And although this model, easy to apply and interpret, does not simulate the exact behavior over time, it can be considered a simple and immediate tool to approximate the number of cases.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-16
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307
10.25176/RFMH.v21i1.3307
url http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307
identifier_str_mv 10.25176/RFMH.v21i1.3307
dc.language.none.fl_str_mv spa
eng
language spa
eng
dc.relation.none.fl_str_mv http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4410
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4379
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4451
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4514
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Ricardo Palma
publisher.none.fl_str_mv Universidad Ricardo Palma
dc.source.none.fl_str_mv Revista de la Facultad de Medicina Humana; Vol 21 No 1 (2021): Revista de la Facultad de Medicina Humana
Revista de la Facultad de Medicina Humana; Vol. 21 Núm. 1 (2021): Revista de la Facultad de Medicina Humana
2308-0531
1814-5469
reponame:Revista URP - Revista de la Facultad de Medicina Humana
instname:Universidad Ricardo Palma
instacron:URP
reponame_str Revista URP - Revista de la Facultad de Medicina Humana
collection Revista URP - Revista de la Facultad de Medicina Humana
instname_str Universidad Ricardo Palma
instacron_str URP
institution URP
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1701472112041000960
score 13.945396
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).