Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru
Descripción del Articulo
Objective: To estimate an Integrated Autoregressive Moving Average model (ARIMA) for the analysis of series of COVID-19 cases, in Peru. Methods: The present study was based on a univariate time series analysis; The data used refer to the number of new accumulated cases of COVID-19 from March 6 to Ju...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Universidad Ricardo Palma |
| Repositorio: | Revista URP - Revista de la Facultad de Medicina Humana |
| Lenguaje: | español inglés |
| OAI Identifier: | oai:oai.revistas.urp.edu.pe:article/3307 |
| Enlace del recurso: | http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307 |
| Nivel de acceso: | acceso abierto |
| Materia: | Forecasting Pandemics Coronavirus |
| id |
2308-0531_1fb6967cbf2e41843007161cab9b8e1a |
|---|---|
| oai_identifier_str |
oai:oai.revistas.urp.edu.pe:article/3307 |
| network_acronym_str |
2308-0531 |
| repository_id_str |
. |
| network_name_str |
Revista URP - Revista de la Facultad de Medicina Humana |
| spelling |
Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in PeruAplicación del Método Autorregresivo Integrado de Medias Móviles para el análisis de series de casos de COVID-19 en el PerúCordova Sotomayor, Daniel AngelSanta Maria Carlos, Flor BenignaForecastingPandemicsCoronavirusObjective: To estimate an Integrated Autoregressive Moving Average model (ARIMA) for the analysis of series of COVID-19 cases, in Peru. Methods: The present study was based on a univariate time series analysis; The data used refer to the number of new accumulated cases of COVID-19 from March 6 to June 11, 2020. For the analysis of the fit of the model, the autocorrelation coefficients (ACF), the unit root test of Augmented Dickey-Fuller (ADF), the Normalized Bayesian Information Criterion (Normalized BIC), the absolute mean percentage error (MAPE) and the Box-Ljung test. Results: The prognosis for COVID-19 cases, between June 12 and July 11, 2020 ranges from 220 596 to 429 790. Conclusions: The results obtained with the ARIMA model, compared with the observed data, show an adequate adjustment of the values; And although this model, easy to apply and interpret, does not simulate the exact behavior over time, it can be considered a simple and immediate tool to approximate the number of cases.Objetivo: Estimar un modelo Autorregresivo Integrado de Medias Móviles (ARIMA) para el análisis de series de casos de COVID-19, en Perú. Métodos: El presente estudio se basó en un análisis de series temporales univariante; los datos utilizados se refieren a la cantidad de casos nuevos acumulados de COVID-19 del 06 de marzo al 11 de junio de 2020. Para el análisis del ajuste del modelo se utilizaron los coeficientes de autocorrelación (ACF), el contraste de raíces unitarias de Dickey-Fuller Aumentado (ADF), el Criterio de Información Bayesiano Normalizado (BIC Normalizado), el error porcentual medio absoluto (MAPE) y el test de Box-Ljung. Resultados: El pronóstico de casos de COVID-19, entre el 12 de junio al 11 de julio de 2020 oscila entre 220 596 a 429 790. Conclusiones: Los resultados obtenidos con el modelo ARIMA, comparados con los datos observados, muestran un ajuste adecuado de los valores; y aunque este modelo, de fácil aplicación e interpretación, no simula el comportamiento exacto en el tiempo puede considerarse una herramienta simple e inmediata para aproximar el numero de casos.Universidad Ricardo Palma2020-12-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmltext/htmlapplication/pdfhttp://revistas.urp.edu.pe/index.php/RFMH/article/view/330710.25176/RFMH.v21i1.3307Revista de la Facultad de Medicina Humana; Vol 21 No 1 (2021): Revista de la Facultad de Medicina HumanaRevista de la Facultad de Medicina Humana; Vol. 21 Núm. 1 (2021): Revista de la Facultad de Medicina Humana2308-05311814-5469reponame:Revista URP - Revista de la Facultad de Medicina Humanainstname:Universidad Ricardo Palmainstacron:URPspaenghttp://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4410http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4379http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4451http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4514info:eu-repo/semantics/openAccess2021-06-02T16:10:27Zmail@mail.com - |
| dc.title.none.fl_str_mv |
Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru Aplicación del Método Autorregresivo Integrado de Medias Móviles para el análisis de series de casos de COVID-19 en el Perú |
| title |
Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru |
| spellingShingle |
Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru Cordova Sotomayor, Daniel Angel Forecasting Pandemics Coronavirus |
| title_short |
Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru |
| title_full |
Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru |
| title_fullStr |
Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru |
| title_full_unstemmed |
Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru |
| title_sort |
Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru |
| dc.creator.none.fl_str_mv |
Cordova Sotomayor, Daniel Angel Santa Maria Carlos, Flor Benigna |
| author |
Cordova Sotomayor, Daniel Angel |
| author_facet |
Cordova Sotomayor, Daniel Angel Santa Maria Carlos, Flor Benigna |
| author_role |
author |
| author2 |
Santa Maria Carlos, Flor Benigna |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Forecasting Pandemics Coronavirus |
| topic |
Forecasting Pandemics Coronavirus |
| dc.description.none.fl_txt_mv |
Objective: To estimate an Integrated Autoregressive Moving Average model (ARIMA) for the analysis of series of COVID-19 cases, in Peru. Methods: The present study was based on a univariate time series analysis; The data used refer to the number of new accumulated cases of COVID-19 from March 6 to June 11, 2020. For the analysis of the fit of the model, the autocorrelation coefficients (ACF), the unit root test of Augmented Dickey-Fuller (ADF), the Normalized Bayesian Information Criterion (Normalized BIC), the absolute mean percentage error (MAPE) and the Box-Ljung test. Results: The prognosis for COVID-19 cases, between June 12 and July 11, 2020 ranges from 220 596 to 429 790. Conclusions: The results obtained with the ARIMA model, compared with the observed data, show an adequate adjustment of the values; And although this model, easy to apply and interpret, does not simulate the exact behavior over time, it can be considered a simple and immediate tool to approximate the number of cases. Objetivo: Estimar un modelo Autorregresivo Integrado de Medias Móviles (ARIMA) para el análisis de series de casos de COVID-19, en Perú. Métodos: El presente estudio se basó en un análisis de series temporales univariante; los datos utilizados se refieren a la cantidad de casos nuevos acumulados de COVID-19 del 06 de marzo al 11 de junio de 2020. Para el análisis del ajuste del modelo se utilizaron los coeficientes de autocorrelación (ACF), el contraste de raíces unitarias de Dickey-Fuller Aumentado (ADF), el Criterio de Información Bayesiano Normalizado (BIC Normalizado), el error porcentual medio absoluto (MAPE) y el test de Box-Ljung. Resultados: El pronóstico de casos de COVID-19, entre el 12 de junio al 11 de julio de 2020 oscila entre 220 596 a 429 790. Conclusiones: Los resultados obtenidos con el modelo ARIMA, comparados con los datos observados, muestran un ajuste adecuado de los valores; y aunque este modelo, de fácil aplicación e interpretación, no simula el comportamiento exacto en el tiempo puede considerarse una herramienta simple e inmediata para aproximar el numero de casos. |
| description |
Objective: To estimate an Integrated Autoregressive Moving Average model (ARIMA) for the analysis of series of COVID-19 cases, in Peru. Methods: The present study was based on a univariate time series analysis; The data used refer to the number of new accumulated cases of COVID-19 from March 6 to June 11, 2020. For the analysis of the fit of the model, the autocorrelation coefficients (ACF), the unit root test of Augmented Dickey-Fuller (ADF), the Normalized Bayesian Information Criterion (Normalized BIC), the absolute mean percentage error (MAPE) and the Box-Ljung test. Results: The prognosis for COVID-19 cases, between June 12 and July 11, 2020 ranges from 220 596 to 429 790. Conclusions: The results obtained with the ARIMA model, compared with the observed data, show an adequate adjustment of the values; And although this model, easy to apply and interpret, does not simulate the exact behavior over time, it can be considered a simple and immediate tool to approximate the number of cases. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-12-16 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307 10.25176/RFMH.v21i1.3307 |
| url |
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307 |
| identifier_str_mv |
10.25176/RFMH.v21i1.3307 |
| dc.language.none.fl_str_mv |
spa eng |
| language |
spa eng |
| dc.relation.none.fl_str_mv |
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4410 http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4379 http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4451 http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307/4514 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html text/html application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Ricardo Palma |
| publisher.none.fl_str_mv |
Universidad Ricardo Palma |
| dc.source.none.fl_str_mv |
Revista de la Facultad de Medicina Humana; Vol 21 No 1 (2021): Revista de la Facultad de Medicina Humana Revista de la Facultad de Medicina Humana; Vol. 21 Núm. 1 (2021): Revista de la Facultad de Medicina Humana 2308-0531 1814-5469 reponame:Revista URP - Revista de la Facultad de Medicina Humana instname:Universidad Ricardo Palma instacron:URP |
| reponame_str |
Revista URP - Revista de la Facultad de Medicina Humana |
| collection |
Revista URP - Revista de la Facultad de Medicina Humana |
| instname_str |
Universidad Ricardo Palma |
| instacron_str |
URP |
| institution |
URP |
| repository.name.fl_str_mv |
-
|
| repository.mail.fl_str_mv |
mail@mail.com |
| _version_ |
1701472112041000960 |
| score |
13.945396 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).