Application of the Integrated Autoregressive Method of Moving Averages for the analysis of series of cases of COVID-19 in Peru

Descripción del Articulo

Objective: To estimate an Integrated Autoregressive Moving Average model (ARIMA) for the analysis of series of COVID-19 cases, in Peru. Methods: The present study was based on a univariate time series analysis; The data used refer to the number of new accumulated cases of COVID-19 from March 6 to Ju...

Descripción completa

Detalles Bibliográficos
Autores: Cordova Sotomayor, Daniel Angel, Santa Maria Carlos, Flor Benigna
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Ricardo Palma
Repositorio:Revista URP - Revista de la Facultad de Medicina Humana
Lenguaje:español
inglés
OAI Identifier:oai:oai.revistas.urp.edu.pe:article/3307
Enlace del recurso:http://revistas.urp.edu.pe/index.php/RFMH/article/view/3307
Nivel de acceso:acceso abierto
Materia:Forecasting
Pandemics
Coronavirus
Descripción
Sumario:Objective: To estimate an Integrated Autoregressive Moving Average model (ARIMA) for the analysis of series of COVID-19 cases, in Peru. Methods: The present study was based on a univariate time series analysis; The data used refer to the number of new accumulated cases of COVID-19 from March 6 to June 11, 2020. For the analysis of the fit of the model, the autocorrelation coefficients (ACF), the unit root test of Augmented Dickey-Fuller (ADF), the Normalized Bayesian Information Criterion (Normalized BIC), the absolute mean percentage error (MAPE) and the Box-Ljung test. Results: The prognosis for COVID-19 cases, between June 12 and July 11, 2020 ranges from 220 596 to 429 790. Conclusions: The results obtained with the ARIMA model, compared with the observed data, show an adequate adjustment of the values; And although this model, easy to apply and interpret, does not simulate the exact behavior over time, it can be considered a simple and immediate tool to approximate the number of cases.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).