Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networks

Descripción del Articulo

The paper aims to review the existing methodologies for multiresponse optimization, integrate them into one and develop a new algorithm that allows to overcome the existing limitations. For this purpose we reviewed statistical optimization methodologies using the traditional response surface methodo...

Descripción completa

Detalles Bibliográficos
Autor: Cevallos Ampuero, Juan
Formato: artículo
Fecha de Publicación:2012
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revista UNMSM - Industrial Data
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/6369
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6369
Nivel de acceso:acceso abierto
Materia:Quality improvement
Multiple Response Optimization
Bayesian Statistics
Neural Networks.
Mejora de la calidad. Optimización Multirespuesta. Estadística Bayesiana. Redes Neuronales.
id 1810-9993_d4a6ae489f3dd0120cc177b3b3c42d43
oai_identifier_str oai:ojs.csi.unmsm:article/6369
network_acronym_str 1810-9993
repository_id_str .
network_name_str Revista UNMSM - Industrial Data
spelling Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networksOptimización multirespuesta para mejora de la calidad. Comparación de enfoque clásico con el enfoque bayesiano y el de redes neuronalesCevallos Ampuero, JuanQuality improvementMultiple Response OptimizationBayesian StatisticsNeural Networks.Mejora de la calidad. Optimización Multirespuesta. Estadística Bayesiana. Redes Neuronales.The paper aims to review the existing methodologies for multiresponse optimization, integrate them into one and develop a new algorithm that allows to overcome the existing limitations. For this purpose we reviewed statistical optimization methodologies using the traditional response surface methodology with robust design, then reviewed the application of the bayesian approach to that obtained with traditional statistics, and finally reviewed artificial neural network applications to cases of optimization. After performing the analysis and discussion about the three methodologies were integrated into one, having developed a new algorithm to overcome the limitations and shortcomings of the previous methods. Also, we compared the results obtained with other methods with those obtained with the new method, with favorable outcome. Thus we have developed a multi-response optimization methodology that considers linear and nonlinear relationships, which has the qualities of traditional statistical methodologies, bayesian statistics, and artificial neural networks.El trabajo tiene por objetivo revisar las metodologías existentes sobre optimización multirespuesta, integrarlas en una sola y desarrollar un nuevo algoritmo que permita superar las limitaciones existentes.Para tal efecto se revisaron las metodologías de optimización estadística mediante metodología de superficie de respuesta tradicional,con diseño robusto; seguidamente se revisó la aplicación del enfoque bayesiano a lo obtenido con la estadística tradicional; y finalmente se revisaron aplicaciones de redes neuronales artificiales a casos de optimización. Luego de realizar el análisis y discusión sobre el tema se integrólas tres metodologías en una sola, habiendo desarrollado un nuevo algoritmo que permite superar las limitaciones y deficiencias de los métodos anteriores. Asimismo, se compararon los resultados obtenidos con otros métodos con los que se obtendrían con el nuevo método, siendo resultado favorable.Por tanto se ha desarrollado una metodología de optimización multirespuesta que considera relaciones lineales y no lineales, que tiene las cualidades de lasmetodologías de la estadistica tradicional,la estadística bayesiana, y las redes neuronales artificiales.Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos2012-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/636910.15381/idata.v15i2.6369Industrial Data; Vol. 15 Núm. 2 (2012); 029-041Industrial Data; Vol 15 No 2 (2012); 029-0411810-99931560-9146reponame:Revista UNMSM - Industrial Datainstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6369/5579Derechos de autor 2012 Juan Cevallos Ampuerohttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccess2021-06-01T17:26:02Zmail@mail.com -
dc.title.none.fl_str_mv Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networks
Optimización multirespuesta para mejora de la calidad. Comparación de enfoque clásico con el enfoque bayesiano y el de redes neuronales
title Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networks
spellingShingle Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networks
Cevallos Ampuero, Juan
Quality improvement
Multiple Response Optimization
Bayesian Statistics
Neural Networks.
Mejora de la calidad. Optimización Multirespuesta. Estadística Bayesiana. Redes Neuronales.
title_short Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networks
title_full Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networks
title_fullStr Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networks
title_full_unstemmed Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networks
title_sort Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networks
dc.creator.none.fl_str_mv Cevallos Ampuero, Juan
author Cevallos Ampuero, Juan
author_facet Cevallos Ampuero, Juan
author_role author
dc.subject.none.fl_str_mv Quality improvement
Multiple Response Optimization
Bayesian Statistics
Neural Networks.
Mejora de la calidad. Optimización Multirespuesta. Estadística Bayesiana. Redes Neuronales.
topic Quality improvement
Multiple Response Optimization
Bayesian Statistics
Neural Networks.
Mejora de la calidad. Optimización Multirespuesta. Estadística Bayesiana. Redes Neuronales.
dc.description.none.fl_txt_mv The paper aims to review the existing methodologies for multiresponse optimization, integrate them into one and develop a new algorithm that allows to overcome the existing limitations. For this purpose we reviewed statistical optimization methodologies using the traditional response surface methodology with robust design, then reviewed the application of the bayesian approach to that obtained with traditional statistics, and finally reviewed artificial neural network applications to cases of optimization. After performing the analysis and discussion about the three methodologies were integrated into one, having developed a new algorithm to overcome the limitations and shortcomings of the previous methods. Also, we compared the results obtained with other methods with those obtained with the new method, with favorable outcome. Thus we have developed a multi-response optimization methodology that considers linear and nonlinear relationships, which has the qualities of traditional statistical methodologies, bayesian statistics, and artificial neural networks.
El trabajo tiene por objetivo revisar las metodologías existentes sobre optimización multirespuesta, integrarlas en una sola y desarrollar un nuevo algoritmo que permita superar las limitaciones existentes.Para tal efecto se revisaron las metodologías de optimización estadística mediante metodología de superficie de respuesta tradicional,con diseño robusto; seguidamente se revisó la aplicación del enfoque bayesiano a lo obtenido con la estadística tradicional; y finalmente se revisaron aplicaciones de redes neuronales artificiales a casos de optimización. Luego de realizar el análisis y discusión sobre el tema se integrólas tres metodologías en una sola, habiendo desarrollado un nuevo algoritmo que permite superar las limitaciones y deficiencias de los métodos anteriores. Asimismo, se compararon los resultados obtenidos con otros métodos con los que se obtendrían con el nuevo método, siendo resultado favorable.Por tanto se ha desarrollado una metodología de optimización multirespuesta que considera relaciones lineales y no lineales, que tiene las cualidades de lasmetodologías de la estadistica tradicional,la estadística bayesiana, y las redes neuronales artificiales.
description The paper aims to review the existing methodologies for multiresponse optimization, integrate them into one and develop a new algorithm that allows to overcome the existing limitations. For this purpose we reviewed statistical optimization methodologies using the traditional response surface methodology with robust design, then reviewed the application of the bayesian approach to that obtained with traditional statistics, and finally reviewed artificial neural network applications to cases of optimization. After performing the analysis and discussion about the three methodologies were integrated into one, having developed a new algorithm to overcome the limitations and shortcomings of the previous methods. Also, we compared the results obtained with other methods with those obtained with the new method, with favorable outcome. Thus we have developed a multi-response optimization methodology that considers linear and nonlinear relationships, which has the qualities of traditional statistical methodologies, bayesian statistics, and artificial neural networks.
publishDate 2012
dc.date.none.fl_str_mv 2012-12-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6369
10.15381/idata.v15i2.6369
url https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6369
identifier_str_mv 10.15381/idata.v15i2.6369
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6369/5579
dc.rights.none.fl_str_mv Derechos de autor 2012 Juan Cevallos Ampuero
http://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2012 Juan Cevallos Ampuero
http://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos
publisher.none.fl_str_mv Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos
dc.source.none.fl_str_mv Industrial Data; Vol. 15 Núm. 2 (2012); 029-041
Industrial Data; Vol 15 No 2 (2012); 029-041
1810-9993
1560-9146
reponame:Revista UNMSM - Industrial Data
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
reponame_str Revista UNMSM - Industrial Data
collection Revista UNMSM - Industrial Data
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1701386357988917248
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).