Multiple response optimization for quality improvement. comparative between classic approach with bayesian approach and neural networks

Descripción del Articulo

The paper aims to review the existing methodologies for multiresponse optimization, integrate them into one and develop a new algorithm that allows to overcome the existing limitations. For this purpose we reviewed statistical optimization methodologies using the traditional response surface methodo...

Descripción completa

Detalles Bibliográficos
Autor: Cevallos Ampuero, Juan
Formato: artículo
Fecha de Publicación:2012
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/6369
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6369
Nivel de acceso:acceso abierto
Materia:Quality improvement
Multiple Response Optimization
Bayesian Statistics
Neural Networks.
Mejora de la calidad. Optimización Multirespuesta. Estadística Bayesiana. Redes Neuronales.
Descripción
Sumario:The paper aims to review the existing methodologies for multiresponse optimization, integrate them into one and develop a new algorithm that allows to overcome the existing limitations. For this purpose we reviewed statistical optimization methodologies using the traditional response surface methodology with robust design, then reviewed the application of the bayesian approach to that obtained with traditional statistics, and finally reviewed artificial neural network applications to cases of optimization. After performing the analysis and discussion about the three methodologies were integrated into one, having developed a new algorithm to overcome the limitations and shortcomings of the previous methods. Also, we compared the results obtained with other methods with those obtained with the new method, with favorable outcome. Thus we have developed a multi-response optimization methodology that considers linear and nonlinear relationships, which has the qualities of traditional statistical methodologies, bayesian statistics, and artificial neural networks.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).