Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos

Descripción del Articulo

El artículo propone, un algoritmo genético para solucionar óptimamente el problema de la programación de tareas en un sistema de producción Flexible Job Shop Scheduling (FJSS) multiobjetivo, actualmente de interés por muchos investigadores, porque es un problema de optimización combinatoria de compl...

Descripción completa

Detalles Bibliográficos
Autor: Tejada Muñoz, Guillermo
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revista UNMSM - Industrial Data
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/12846
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846
Nivel de acceso:acceso abierto
Materia:Flexible Job Shop Scheduling Problem
Genetic Algorithms
Makespan
Maximum Workload
Total Workload.
Algoritmos Genéticos
Máximo Workload
id 1810-9993_52849d622e84cdb087924fdd6fba4782
oai_identifier_str oai:ojs.csi.unmsm:article/12846
network_acronym_str 1810-9993
repository_id_str .
network_name_str Revista UNMSM - Industrial Data
spelling Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticosOptimum routing and sequencing in a flexible multiobjective job shop using genetic algorithmsTejada Muñoz, GuillermoFlexible Job Shop Scheduling ProblemGenetic AlgorithmsMakespanMaximum WorkloadTotal Workload.Flexible Job Shop Scheduling ProblemAlgoritmos GenéticosMakespanMáximo WorkloadTotal Workload.El artículo propone, un algoritmo genético para solucionar óptimamente el problema de la programación de tareas en un sistema de producción Flexible Job Shop Scheduling (FJSS) multiobjetivo, actualmente de interés por muchos investigadores, porque es un problema de optimización combinatoria de complejidad NP-hard, y porque una solución óptima redunda en un aumento en la producción. Se divide el problema, en el subproblema de enrutamiento, en donde se asigna, a cada operación de los Jobs, una de las máquinas más óptima (desde un conjunto disponible) minimizando el Máximo Workload, y Total Workload, y el subproblema de secuenciación, en donde es encontrado el orden óptimo de ejecución de las operaciones (distribuidas en cada máquina) minimizando el Makespan. El algoritmo es codificado en lenguaje M de Matlab, su desempeño es puesto a prueba, solucionando complejos problemas, y los resultados se comparan con los obtenidos por otros investigadores.The paper proposes a genetic algorithm to solve optimally the problem of scheduling in a multi-objective production system Flexible Job Shop (FJS), currently of interest for many researchers, because it is a combinatorial optimization problem of complexity NP-hard, and because an optimal solution results in an increase in production. the problem is divided, in the subproblem routing, where it is assigned to each operation of Jobs, one of the most optimum machines (from a set available) minimizing Maximum Workload, and Total Workload and subproblem sequencing, where it is found the optimal order of execution of operations (distributed on each machine) minimizing the Makespan. The algorithm is coded in Matlab M language, their performance is tested, solving complex problems, and the results are compared with those obtained by other researchers.Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos2016-12-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/1284610.15381/idata.v19i2.12846Industrial Data; Vol. 19 Núm. 2 (2016); 124-133Industrial Data; Vol 19 No 2 (2016); 124-1331810-99931560-9146reponame:Revista UNMSM - Industrial Datainstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846/11514Derechos de autor 2016 Guillermo Tejada Muñozhttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccess2021-06-01T17:26:55Zmail@mail.com -
dc.title.none.fl_str_mv Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos
Optimum routing and sequencing in a flexible multiobjective job shop using genetic algorithms
title Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos
spellingShingle Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos
Tejada Muñoz, Guillermo
Flexible Job Shop Scheduling Problem
Genetic Algorithms
Makespan
Maximum Workload
Total Workload.
Flexible Job Shop Scheduling Problem
Algoritmos Genéticos
Makespan
Máximo Workload
Total Workload.
title_short Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos
title_full Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos
title_fullStr Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos
title_full_unstemmed Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos
title_sort Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos
dc.creator.none.fl_str_mv Tejada Muñoz, Guillermo
author Tejada Muñoz, Guillermo
author_facet Tejada Muñoz, Guillermo
author_role author
dc.subject.none.fl_str_mv Flexible Job Shop Scheduling Problem
Genetic Algorithms
Makespan
Maximum Workload
Total Workload.
Flexible Job Shop Scheduling Problem
Algoritmos Genéticos
Makespan
Máximo Workload
Total Workload.
topic Flexible Job Shop Scheduling Problem
Genetic Algorithms
Makespan
Maximum Workload
Total Workload.
Flexible Job Shop Scheduling Problem
Algoritmos Genéticos
Makespan
Máximo Workload
Total Workload.
dc.description.none.fl_txt_mv El artículo propone, un algoritmo genético para solucionar óptimamente el problema de la programación de tareas en un sistema de producción Flexible Job Shop Scheduling (FJSS) multiobjetivo, actualmente de interés por muchos investigadores, porque es un problema de optimización combinatoria de complejidad NP-hard, y porque una solución óptima redunda en un aumento en la producción. Se divide el problema, en el subproblema de enrutamiento, en donde se asigna, a cada operación de los Jobs, una de las máquinas más óptima (desde un conjunto disponible) minimizando el Máximo Workload, y Total Workload, y el subproblema de secuenciación, en donde es encontrado el orden óptimo de ejecución de las operaciones (distribuidas en cada máquina) minimizando el Makespan. El algoritmo es codificado en lenguaje M de Matlab, su desempeño es puesto a prueba, solucionando complejos problemas, y los resultados se comparan con los obtenidos por otros investigadores.
The paper proposes a genetic algorithm to solve optimally the problem of scheduling in a multi-objective production system Flexible Job Shop (FJS), currently of interest for many researchers, because it is a combinatorial optimization problem of complexity NP-hard, and because an optimal solution results in an increase in production. the problem is divided, in the subproblem routing, where it is assigned to each operation of Jobs, one of the most optimum machines (from a set available) minimizing Maximum Workload, and Total Workload and subproblem sequencing, where it is found the optimal order of execution of operations (distributed on each machine) minimizing the Makespan. The algorithm is coded in Matlab M language, their performance is tested, solving complex problems, and the results are compared with those obtained by other researchers.
description El artículo propone, un algoritmo genético para solucionar óptimamente el problema de la programación de tareas en un sistema de producción Flexible Job Shop Scheduling (FJSS) multiobjetivo, actualmente de interés por muchos investigadores, porque es un problema de optimización combinatoria de complejidad NP-hard, y porque una solución óptima redunda en un aumento en la producción. Se divide el problema, en el subproblema de enrutamiento, en donde se asigna, a cada operación de los Jobs, una de las máquinas más óptima (desde un conjunto disponible) minimizando el Máximo Workload, y Total Workload, y el subproblema de secuenciación, en donde es encontrado el orden óptimo de ejecución de las operaciones (distribuidas en cada máquina) minimizando el Makespan. El algoritmo es codificado en lenguaje M de Matlab, su desempeño es puesto a prueba, solucionando complejos problemas, y los resultados se comparan con los obtenidos por otros investigadores.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-23
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846
10.15381/idata.v19i2.12846
url https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846
identifier_str_mv 10.15381/idata.v19i2.12846
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846/11514
dc.rights.none.fl_str_mv Derechos de autor 2016 Guillermo Tejada Muñoz
http://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2016 Guillermo Tejada Muñoz
http://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos
publisher.none.fl_str_mv Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos
dc.source.none.fl_str_mv Industrial Data; Vol. 19 Núm. 2 (2016); 124-133
Industrial Data; Vol 19 No 2 (2016); 124-133
1810-9993
1560-9146
reponame:Revista UNMSM - Industrial Data
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
reponame_str Revista UNMSM - Industrial Data
collection Revista UNMSM - Industrial Data
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1701386359496769536
score 13.944437
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).