Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos
Descripción del Articulo
El artículo propone, un algoritmo genético para solucionar óptimamente el problema de la programación de tareas en un sistema de producción Flexible Job Shop Scheduling (FJSS) multiobjetivo, actualmente de interés por muchos investigadores, porque es un problema de optimización combinatoria de compl...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2016 |
| Institución: | Universidad Nacional Mayor de San Marcos |
| Repositorio: | Revista UNMSM - Industrial Data |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.csi.unmsm:article/12846 |
| Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846 |
| Nivel de acceso: | acceso abierto |
| Materia: | Flexible Job Shop Scheduling Problem Genetic Algorithms Makespan Maximum Workload Total Workload. Algoritmos Genéticos Máximo Workload |
| id |
1810-9993_52849d622e84cdb087924fdd6fba4782 |
|---|---|
| oai_identifier_str |
oai:ojs.csi.unmsm:article/12846 |
| network_acronym_str |
1810-9993 |
| repository_id_str |
. |
| network_name_str |
Revista UNMSM - Industrial Data |
| spelling |
Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticosOptimum routing and sequencing in a flexible multiobjective job shop using genetic algorithmsTejada Muñoz, GuillermoFlexible Job Shop Scheduling ProblemGenetic AlgorithmsMakespanMaximum WorkloadTotal Workload.Flexible Job Shop Scheduling ProblemAlgoritmos GenéticosMakespanMáximo WorkloadTotal Workload.El artículo propone, un algoritmo genético para solucionar óptimamente el problema de la programación de tareas en un sistema de producción Flexible Job Shop Scheduling (FJSS) multiobjetivo, actualmente de interés por muchos investigadores, porque es un problema de optimización combinatoria de complejidad NP-hard, y porque una solución óptima redunda en un aumento en la producción. Se divide el problema, en el subproblema de enrutamiento, en donde se asigna, a cada operación de los Jobs, una de las máquinas más óptima (desde un conjunto disponible) minimizando el Máximo Workload, y Total Workload, y el subproblema de secuenciación, en donde es encontrado el orden óptimo de ejecución de las operaciones (distribuidas en cada máquina) minimizando el Makespan. El algoritmo es codificado en lenguaje M de Matlab, su desempeño es puesto a prueba, solucionando complejos problemas, y los resultados se comparan con los obtenidos por otros investigadores.The paper proposes a genetic algorithm to solve optimally the problem of scheduling in a multi-objective production system Flexible Job Shop (FJS), currently of interest for many researchers, because it is a combinatorial optimization problem of complexity NP-hard, and because an optimal solution results in an increase in production. the problem is divided, in the subproblem routing, where it is assigned to each operation of Jobs, one of the most optimum machines (from a set available) minimizing Maximum Workload, and Total Workload and subproblem sequencing, where it is found the optimal order of execution of operations (distributed on each machine) minimizing the Makespan. The algorithm is coded in Matlab M language, their performance is tested, solving complex problems, and the results are compared with those obtained by other researchers.Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos2016-12-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/1284610.15381/idata.v19i2.12846Industrial Data; Vol. 19 Núm. 2 (2016); 124-133Industrial Data; Vol 19 No 2 (2016); 124-1331810-99931560-9146reponame:Revista UNMSM - Industrial Datainstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846/11514Derechos de autor 2016 Guillermo Tejada Muñozhttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccess2021-06-01T17:26:55Zmail@mail.com - |
| dc.title.none.fl_str_mv |
Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos Optimum routing and sequencing in a flexible multiobjective job shop using genetic algorithms |
| title |
Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos |
| spellingShingle |
Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos Tejada Muñoz, Guillermo Flexible Job Shop Scheduling Problem Genetic Algorithms Makespan Maximum Workload Total Workload. Flexible Job Shop Scheduling Problem Algoritmos Genéticos Makespan Máximo Workload Total Workload. |
| title_short |
Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos |
| title_full |
Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos |
| title_fullStr |
Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos |
| title_full_unstemmed |
Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos |
| title_sort |
Enrutamiento y secuenciación óptimos en un flexible job shop multiobjetivo mediante algoritmos genéticos |
| dc.creator.none.fl_str_mv |
Tejada Muñoz, Guillermo |
| author |
Tejada Muñoz, Guillermo |
| author_facet |
Tejada Muñoz, Guillermo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Flexible Job Shop Scheduling Problem Genetic Algorithms Makespan Maximum Workload Total Workload. Flexible Job Shop Scheduling Problem Algoritmos Genéticos Makespan Máximo Workload Total Workload. |
| topic |
Flexible Job Shop Scheduling Problem Genetic Algorithms Makespan Maximum Workload Total Workload. Flexible Job Shop Scheduling Problem Algoritmos Genéticos Makespan Máximo Workload Total Workload. |
| dc.description.none.fl_txt_mv |
El artículo propone, un algoritmo genético para solucionar óptimamente el problema de la programación de tareas en un sistema de producción Flexible Job Shop Scheduling (FJSS) multiobjetivo, actualmente de interés por muchos investigadores, porque es un problema de optimización combinatoria de complejidad NP-hard, y porque una solución óptima redunda en un aumento en la producción. Se divide el problema, en el subproblema de enrutamiento, en donde se asigna, a cada operación de los Jobs, una de las máquinas más óptima (desde un conjunto disponible) minimizando el Máximo Workload, y Total Workload, y el subproblema de secuenciación, en donde es encontrado el orden óptimo de ejecución de las operaciones (distribuidas en cada máquina) minimizando el Makespan. El algoritmo es codificado en lenguaje M de Matlab, su desempeño es puesto a prueba, solucionando complejos problemas, y los resultados se comparan con los obtenidos por otros investigadores. The paper proposes a genetic algorithm to solve optimally the problem of scheduling in a multi-objective production system Flexible Job Shop (FJS), currently of interest for many researchers, because it is a combinatorial optimization problem of complexity NP-hard, and because an optimal solution results in an increase in production. the problem is divided, in the subproblem routing, where it is assigned to each operation of Jobs, one of the most optimum machines (from a set available) minimizing Maximum Workload, and Total Workload and subproblem sequencing, where it is found the optimal order of execution of operations (distributed on each machine) minimizing the Makespan. The algorithm is coded in Matlab M language, their performance is tested, solving complex problems, and the results are compared with those obtained by other researchers. |
| description |
El artículo propone, un algoritmo genético para solucionar óptimamente el problema de la programación de tareas en un sistema de producción Flexible Job Shop Scheduling (FJSS) multiobjetivo, actualmente de interés por muchos investigadores, porque es un problema de optimización combinatoria de complejidad NP-hard, y porque una solución óptima redunda en un aumento en la producción. Se divide el problema, en el subproblema de enrutamiento, en donde se asigna, a cada operación de los Jobs, una de las máquinas más óptima (desde un conjunto disponible) minimizando el Máximo Workload, y Total Workload, y el subproblema de secuenciación, en donde es encontrado el orden óptimo de ejecución de las operaciones (distribuidas en cada máquina) minimizando el Makespan. El algoritmo es codificado en lenguaje M de Matlab, su desempeño es puesto a prueba, solucionando complejos problemas, y los resultados se comparan con los obtenidos por otros investigadores. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-12-23 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846 10.15381/idata.v19i2.12846 |
| url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846 |
| identifier_str_mv |
10.15381/idata.v19i2.12846 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846/11514 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2016 Guillermo Tejada Muñoz http://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2016 Guillermo Tejada Muñoz http://creativecommons.org/licenses/by-nc-sa/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos |
| publisher.none.fl_str_mv |
Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos |
| dc.source.none.fl_str_mv |
Industrial Data; Vol. 19 Núm. 2 (2016); 124-133 Industrial Data; Vol 19 No 2 (2016); 124-133 1810-9993 1560-9146 reponame:Revista UNMSM - Industrial Data instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
| reponame_str |
Revista UNMSM - Industrial Data |
| collection |
Revista UNMSM - Industrial Data |
| instname_str |
Universidad Nacional Mayor de San Marcos |
| instacron_str |
UNMSM |
| institution |
UNMSM |
| repository.name.fl_str_mv |
-
|
| repository.mail.fl_str_mv |
mail@mail.com |
| _version_ |
1701386359496769536 |
| score |
13.944437 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).