Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game
Descripción del Articulo
In this work, two search algorithms Expectimax and Monte Carlo Tree Search (MCTS) were developed to solve the well-known “2048" puzzle online-game and compare their results. In both cases, five heuristics were employed to obtain favorable tile positions within the game. These heuristics were co...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2018 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revista UNMSM - Pesquimat |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/15069 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/15069 |
Nivel de acceso: | acceso abierto |
Materia: | 2048 game Expectimax algorithm Monte Carlo algorithm heuristics Juego 2048 Algoritmo Expectimax Monte Carlo heuristicas |
Sumario: | In this work, two search algorithms Expectimax and Monte Carlo Tree Search (MCTS) were developed to solve the well-known “2048" puzzle online-game and compare their results. In both cases, five heuristics were employed to obtain favorable tile positions within the game. These heuristics were combined to maximize the game-score in all possible board positions. As a result, the game-score, the maximum value of tile obtained, and the computing time employed in solving the game are shown. In addition, the efficiency of each algorithm and its sub-cases are presented. This research concludes by arguing that Monte Carlo Tree Search was more efficient in higher score than Expectimax algorithm, although in a longer time. Increments in level of depth-search in Expectimax and number of moves in MCTS do not necessarily resulted in obtaining higher score. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).