The Portfolio Investment Analysis Using Monte Carlo Simulation in Python: Risk and Return Assessment with Mexican Stocks: Portfolio Investment Analysis Using Monte Carlo Simulation in Python: Risk and Return Assessment with Mexican Stocks.

Descripción del Articulo

This study applies Monte Carlo simulation to analyze investment portfolios, focusing on the risk and return of ten selected Mexican stocks from diverse industries. By generating 1,000 random weight combinations, the simulation revealed a wide range of portfolio performance scenarios. Results highlig...

Descripción completa

Detalles Bibliográficos
Autor: de la Vega Meneses, José Gerardo
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional Jorge Basadre Grohmann
Repositorio:Revistas - Universidad Nacional Jorge Basadre Grohmann
Lenguaje:español
OAI Identifier:oai:revistas.unjbg.edu.pe:article/2218
Enlace del recurso:https://revistas.unjbg.edu.pe/index.php/eyn/article/view/2218
Nivel de acceso:acceso abierto
Materia:Simulación
Monte
Carlo
portafolios
de
inversión
Sharpe
ratio
Simulation
investment
portfolios
Descripción
Sumario:This study applies Monte Carlo simulation to analyze investment portfolios, focusing on the risk and return of ten selected Mexican stocks from diverse industries. By generating 1,000 random weight combinations, the simulation revealed a wide range of portfolio performance scenarios. Results highlighted the importance of the Sharpe ratio in identifying optimal portfolios, showing that higher returns often come with greater volatility, while stable portfolios provide better risk-return balance. The efficient frontier visualized the relationship between volatility and expected returns. This analysis demonstrates the value of Monte Carlo simulation as a tool for optimizing asset allocation and supporting informed investment decisions.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).