1
artículo
Publicado 2014
Enlace
Enlace
The Tropical Rainfall Measuring Mission 3B42 precipitation estimates are widely used in tropical regions for hydrometeorological research. Recently, version 7 of the product was released. Major revisions to the algorithm involve the radar reflectivity-rainfall rate relationship, surface clutter detection over high terrain, a new reference database for the passive microwave algorithm, and a higher-quality gauge analysis product for monthly bias correction. To assess the impacts of the improved algorithm, the authors compare the version 7 and the older version 6 products with data from 263 rain gauges in and around the northern Peruvian Andes. The region covers humid tropical rain forest, tropical mountains, and arid-to-humid coastal plains. The authors find that the version 7 product has a significantly lower bias and an improved representation of the rainfall distribution. They further e...
2
artículo
Publicado 2013
Enlace
Enlace
Global land surface models (LSMs) such as the Joint UK Land Environment Simulator (JULES) are originally developed to provide surface boundary conditions for climate models. They are increasingly used for hydrological simulation, for instance to simulate the impacts of land use changes and other perturbations on the water cycle. This study investigates how well such models represent the major hydrological fluxes at the relevant spatial and temporal scales-an important question for reliable model applications in poorly understood, data-scarce environments. The JULES-LSM is implemented in a 360 000 km2 humid tropical mountain basin of the Peruvian Andes-Amazon at 12-km grid resolution, forced with daily satellite and climate reanalysis data. The simulations are evaluated using conventional discharge-based evaluation methods, and by further comparing the magnitude and internal variability o...
3
artículo
The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the upper Amazon river. Using extreme value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods betwee...
4
artículo
Publicado 2016
Enlace
Enlace
This research was funded by the European Institute of Technology (EIT)Climate Knowledge and Innovation Community (Climate-KIC). Buytaert received support from the Ecuadorian PROMETEO program during part of this research. Buytaert and Zulkafli received support from UK NERC grant NE-K010239-1. Willems and Robles received support from Proyecto Cátedra CONCYTEC: “Teledetección en la Desertificación y Sequía.” Gauge data were obtained from HYBAM (http://www.ore-hybam.org) and NOAA NCDC (http://www.ncdc.noaa.gov/cdo-web) as well as from the national weather services of Bolivia (SENAMHI), Colombia (IDEAM), Ecuador (INAMHI), and Peru (SENAMHI), which are not freely accessible in the public domain but can be requested from the institutions. TRMM 2A25 data were obtained from NASA via the Precipitation Processing System (http://pps.gsfc.nasa.gov). The authors would like to thank Bodo Bookha...
5
artículo
Publicado 2015
Enlace
Enlace
This study compares two nonparametric rainfall data merging methods-the mean bias correction and double-kernel smoothing-with two geostatistical methods-kriging with external drift and Bayesian combination-for optimizing the hydrometeorological performance of a satellite-based precipitation product over a mesoscale tropical Andean watershed in Peru. The analysis is conducted using 11 years of daily time series from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (also TRMM 3B42) and 173 rain gauges from the national weather station network. The results are assessed using 1) a cross-validation procedure and 2) a catchment water balance analysis and hydrological modeling. It is found that the double-kernel smoothing method delivered the most consistent improvement over the original satellite product in both the cross-validation a...
6
artículo
Publicado 2016
Enlace
Enlace
Satellite precipitation products are becoming increasingly useful to complement rain gauge networks in regions where these are too sparse to capture spatial precipitation patterns, such as in the Tropical Andes. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (TPR) was active for 17 years (1998–2014) and has generated one of the longest single-sensor, high-resolution, and high accuracy rainfall records. In this study, high-resolution (5 km) gridded mean monthly climatological precipitation is derived from the raw orbital TPR data (TRMM 2A25) and merged with 723 rain gauges using multiple satellite-gauge (S-G) merging approaches. The resulting precipitation products are evaluated by cross validation and catchment water balances (runoff ratios) for 50 catchments across the Tropical Andes. Results show that the TPR captures major synoptic and seasonal precipitation patt...