1
artículo
Publicado 2016
Enlace
Enlace
This research was funded by the European Institute of Technology (EIT)Climate Knowledge and Innovation Community (Climate-KIC). Buytaert received support from the Ecuadorian PROMETEO program during part of this research. Buytaert and Zulkafli received support from UK NERC grant NE-K010239-1. Willems and Robles received support from Proyecto Cátedra CONCYTEC: “Teledetección en la Desertificación y Sequía.” Gauge data were obtained from HYBAM (http://www.ore-hybam.org) and NOAA NCDC (http://www.ncdc.noaa.gov/cdo-web) as well as from the national weather services of Bolivia (SENAMHI), Colombia (IDEAM), Ecuador (INAMHI), and Peru (SENAMHI), which are not freely accessible in the public domain but can be requested from the institutions. TRMM 2A25 data were obtained from NASA via the Precipitation Processing System (http://pps.gsfc.nasa.gov). The authors would like to thank Bodo Bookha...
2
artículo
Publicado 2017
Enlace
Enlace
An initial ground validation of the Integrated Multisatellite Retrievals for GPM (IMERG) Day-1 product from March 2014 to August 2015 is presented for the tropical Andes. IMERG was evaluated along with the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) against 302 quality-controlled rain gauges across Ecuador and Peru. Detection, quantitative estimation statistics, and probability distribution functions are calculated at different spatial (0.1°, 0.25°) and temporal (1 h, 3 h, daily) scales. Precipitation products are analyzed for hydrometeorologically distinct subregions. Results show that IMERG has a superior detection and quantitative rainfall intensity estimation ability than TMPA, particularly in the high Andes. Despite slightly weaker agreement of mean rainfall fields, IMERG shows better characterization of gauge observations when separatin...
3
artículo
Publicado 2016
Enlace
Enlace
Satellite precipitation products are becoming increasingly useful to complement rain gauge networks in regions where these are too sparse to capture spatial precipitation patterns, such as in the Tropical Andes. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (TPR) was active for 17 years (1998–2014) and has generated one of the longest single-sensor, high-resolution, and high accuracy rainfall records. In this study, high-resolution (5 km) gridded mean monthly climatological precipitation is derived from the raw orbital TPR data (TRMM 2A25) and merged with 723 rain gauges using multiple satellite-gauge (S-G) merging approaches. The resulting precipitation products are evaluated by cross validation and catchment water balances (runoff ratios) for 50 catchments across the Tropical Andes. Results show that the TPR captures major synoptic and seasonal precipitation patt...
4
artículo
Publicado 2014
Enlace
Enlace
The Tropical Rainfall Measuring Mission 3B42 precipitation estimates are widely used in tropical regions for hydrometeorological research. Recently, version 7 of the product was released. Major revisions to the algorithm involve the radar reflectivity-rainfall rate relationship, surface clutter detection over high terrain, a new reference database for the passive microwave algorithm, and a higher-quality gauge analysis product for monthly bias correction. To assess the impacts of the improved algorithm, the authors compare the version 7 and the older version 6 products with data from 263 rain gauges in and around the northern Peruvian Andes. The region covers humid tropical rain forest, tropical mountains, and arid-to-humid coastal plains. The authors find that the version 7 product has a significantly lower bias and an improved representation of the rainfall distribution. They further e...
5
artículo
The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the upper Amazon river. Using extreme value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods betwee...