Mostrando 1 - 3 Resultados de 3 Para Buscar 'Villamar-Torres, Ronald', tiempo de consulta: 0.01s Limitar resultados
1
artículo
Plants’ natural defense mechanisms against herbivorous arthropods include the emission of volatile organic compounds (VOC). Nowadays field observations about plant-insect interactions are better understood thanks to the increasingly scientific investigations over recent decades. There are now more precise data about molecules, action modes and physiological and genetic bases of these plant defense mechanisms. VOC present an important potential for crop protection and pesticide use reduction. In the present review, we focus on the latest research advances about plant protection provided by VOC, considering experimental methods of volatile analysis and the involved genes toward genetic improvement of natural defense in the future varieties, particularly for Upland cotton Gossypium hirsutum.
2
artículo
Plants’ natural defense mechanisms against herbivorous arthropods include the emission of volatile organic compounds (VOC). Nowadays field observations about plant-insect interactions are better understood thanks to the increasingly scientific investigations over recent decades. There are now more precise data about molecules, action modes and physiological and genetic bases of these plant defense mechanisms. VOC present an important potential for crop protection and pesticide use reduction. In the present review, we focus on the latest research advances about plant protection provided by VOC, considering experimental methods of volatile analysis and the involved genes toward genetic improvement of natural defense in the future varieties, particularly for Upland cotton Gossypium hirsutum.
3
artículo
Cotton is a resilient and multipurpose crop, meeting major of the world’s textile needs while also yielding byproducts like edible oil and animal feed. Starch plays a crucial role in cotton fabric production. It enhances fabric strength by forming a protective film around cotton fibers, making them more resistant to wear and tear. BES1 (brassinosteroid insensitive 1) is a key regulator in brassinosteroid signaling. It controls thousands of target genes involved in development processes. Interestingly, two β-amylase proteins (BAM7 and BAM8) are part of the BES1 family, despite their primary function as β-amylases. β-Amylase (BAM) and BES1 are two gene families with functional and regulatory roles in controlling shoot growth and development by mediating brassinosteroid effects. They share similar domains and participate in various biological processes, tolerance and responses to ...