1
artículo
Publicado 2021
Enlace
Enlace
Flooding in the Amazon basin is frequently attributed to modes of large-scale climate variability, but little attention is paid to how these modes influence the timing and duration of floods despite their importance to early warning systems and the significant impacts that these flood characteristics can have on communities. In this study, river discharge data from the Global Flood Awareness System (GloFAS 2.1) and observed data at 58 gauging stations are used to examine whether positive or negative phases of several Pacific and Atlantic indices significantly alter the characteristics of river flows throughout the Amazon basin (1979–2015). Results show significant changes in both flood magnitude and duration, particularly in the north-eastern Amazon for negative El Niño–Southern Oscillation (ENSO) phases when the sea surface temperature (SST) anomaly is positioned in the central tro...
2
artículo
Anomalous conditions in the oceans and atmosphere have the potential to beused to enhance the predictability of flood events, enabling earlier warnings toreduce risk. In the Amazon basin, extreme flooding is consistently attributedto warmer or cooler conditions in the tropical Pacific and Atlantic oceans, withsome evidence linking floods to other hydroclimatic drivers such as theMadden–Julian Oscillation (MJO). This review evaluates the impact of severalhydroclimatic drivers on rainfall and river discharge regimes independently,aggregating all the information of previous studies to provide an up-to-datedepiction of what we currently know and do not know about how variationsin climate impact flooding in the Amazon. Additionally, 34 major flood eventsthat have occurred since 1950 in the Amazon and their attribution to climateanomalies are documented and evaluated. This review finds that ...