1
tesis de maestría
El Método de los Elementos Finitos (MEF) es hoy en día uno de los métodos numéricos más usados para resolver ecuaciones diferenciales parciales provenientes de la física y la ingeniería. Tradicionalmente, el método aproxima la solución por medio de funciones continuas lineales por partes C0 1 . Uno de los principales resultados que permiten la implementación del método es la existencia de una base nita para el espacio C0 1 , en efecto, como veri camos en este trabajo, las funciones de Courant (hat functions) forman una base para C0 1 . Desde sus inicios, por los años 70-80, varias ideas nuevas surgieron para mejorar algunos defectos que se presentaron en el método. Uno de los principales defectos fué la pobre aproximación que se logra usando funciones lineales por partes, y una solución para esto fué considerar espacios Cr p de funciones de clase Cr polinomiales por part...
Enlace