1
artículo
Publicado 2020
Enlace
Enlace
Potatoes—a global food security and staple crop—is threatened by dry spells in drought-prone areas. The use of physiological thresholds to save water while maintaining a reasonable tuber yield has been proposed, but their effects on physiological performances and usefulness under different irrigation methods are yet to be evaluated. In this study, photosynthetic traits were monitored to assess the effect of water restriction and rewatering under drip (DI) and furrow (FI) irrigations. The treatments consisted of two maximum light-saturated stomatal conductance (g_) irrigation thresholds (T2: 0.15 and T3: 0.05 mol H2O m−2 s−1) compared with a fully irrigated control (g_ > 0.3 mol H2O m−2 s−1). DI used less water than FI but promoted early senescence and low percentage of maximum assimilation rate (PMA) at late developmental stages. FI caused no yield penalization in T2 and high...
2
artículo
Publicado 2021
Enlace
Enlace
Canopy temperature (CT) as a surrogate of stomatal conductance has been highlighted as an essential physiological indicator for optimizing irrigation timing in potatoes. However, assessing how this trait could help improve yield prediction will help develop future decision support tools. In this study, the incorporation of CT minus air temperature (dT) in a simple ecophysiological model was analyzed in three trials between 2017 and 2018, testing three water treatments under drip (DI) and furrow (FI) irrigations. Water treatments consisted of control (irrigated until field capacity) and two-timing irrigation based on physiological thresholds (CT and stomatal conductance). Two model perspectives were implemented based on soil water balance (P1) and using dT as the penalizing factor (P2), affecting the biomass dynamics and radiation use efficiency parameters. One of the trials was used for ...
3
artículo
Publicado 2021
Enlace
Enlace
Canopy temperature (CT) as a surrogate of stomatal conductance has been highlighted as an essential physiological indicator for optimizing irrigation timing in potatoes. However, assessing how this trait could help improve yield prediction will help develop future decision support tools. In this study, the incorporation of CT minus air temperature (dT) in a simple ecophysiological model was analyzed in three trials between 2017 and 2018, testing three water treatments under drip (DI) and furrow (FI) irrigations. Water treatments consisted of control (irrigated until field capacity) and two-timing irrigation based on physiological thresholds (CT and stomatal conductance). Two model perspectives were implemented based on soil water balance (P1) and using dT as the penalizing factor (P2), affecting the biomass dynamics and radiation use efficiency parameters. One of the trials was used for ...