Mostrando 1 - 5 Resultados de 5 Para Buscar 'Rojas-Villacorta W.', tiempo de consulta: 0.01s Limitar resultados
1
artículo
The research aimed to generate bioelectricity using pepper waste and the microalgae Spirulina sp by a double-chamber microbial fuel cell (dcMFC). A dcMFC was constructed with Cu and Zn electrodes, where organic waste and microalgae were placed in the anodic and cathodic chambers, respectively. Also, electrochemical parameters were measured for 35 days. Finally, possible electrogenic microorganisms were isolated and identified. It was possible to generate maximum values of current (6.04414 ± 0.2145 mA) and voltage (0.77328 ± 0.213 V). The maximum conductivity value was 134.1636 ± 7.121 mS/cm, while the internal resistance value was 83.784 . The values of power and current density reached were 584.45 ± 19.14 mW/cm 2 and 5.983 A/cm 2, respectively. The optimal operating pH was 4.59 ± 0.14. From the microbial growth on the anode, the yeast Yarrowia phangngaensis (1) and Pseudomonas stut...
2
artículo
“Potential use of organic waste and microalgae generates bioelectricity and thereby reduces harmful effects on the environment. These residues are used due to their high content of electron-generating microorganisms. However, so far, they have not been used simultaneously. Therefore, this research uses mango waste and microalgae Spirulina sp. in double-chamber microbial fuel cells to generate bioelectricity. The cells were made at a laboratory scale using zinc and copper electrodes, achieving a maximum current and voltage of 7.5948 ± 0.3109 mA and 0.84546 ± 0.314 V, with maximum electrical conductivity of the substrate being 157.712 ± 4.56 mS/cm and an optimum operating pH being 5.016 ± 0.086. The cells showed a low internal resistance of approximately 205.056 ± 25 Ω, and a maximum power density of 657.958 ± 21.114 mW/cm2 at a current density of 4.484 A/cm2 . This research provi...
3
artículo
Potential use of organic waste and microalgae generates bioelectricity and thereby reduces harmful effects on the environment. These residues are used due to their high content of electron-generating microorganisms. However, so far, they have not been used simultaneously. Therefore, this research uses mango waste and microalgae Spirulina sp. in double-chamber microbial fuel cells to generate bioelectricity. The cells were made at a laboratory scale using zinc and copper electrodes, achieving a maximum current and voltage of 7.5948 ± 0.3109 mA and 0.84546 ± 0.314 V, with maximum electrical conductivity of the substrate being 157.712 ± 4.56 mS/cm and an optimum operating pH being 5.016 ± 0.086. The cells showed a low internal resistance of approximately 205.056 ± 25 Ω, and a maximum power density of 657.958 ± 21.114 mW/cm2 at a current density of 4.484 A/cm2. This research provides ...
4
artículo
The dumping of organic waste in the areas surrounding food supply centers and the excessive use of fossil fuels for energy generation have generated major pollution problems worldwide. One of the novel solutions is the use of organic waste for electricity generation through the use of microbial fuel cell technology. In this research, low-cost, laboratory-scale, doublechamber microbial fuel cells were fabricated using zinc and copper as electrodes and avocado waste as fuel. Current and voltage values of 3.7326 ± 0.05568 mA and 0.74 ± 0.02121 V were achieved on the seventh day, with an optimum operating pH of 5.98 ± 0.16 and a maximum electrical conductivity of 94.46 ± 5.12 mS/cm. The cells showed a very low operating resistance of 71.480 , indicating the good electrical conductivity of the electrodes. Likewise, a power density of 566.80 ± 13.48 mW/cm2 at a current density of 5.165 A/...
5
artículo
Antibiotics are often prescribed to treat infections caused by group B Streptococcus; however, inappropriate use of antibiotics can develop resistance. Because of this, the research was carried out with the aim of evaluating the in vitro effect of the hydroalcoholic extract of Caesalpinia spinosa (Molina) Kuntze known as Taya or Tara on the viability of β-hemolytic streptococci; an experimental investigation of increasing stimulation was carried out. The hydroalcoholic extract of C. spinosa pods was worked in concentrations of 250, 500, 750, and 1000 mg/mL, which were placed on filter paper discs to perform the sensitivity test following the Kirby–Bauer method. The greatest inhibition of bacterial viability was observed in the penicillin control group (GPT-01) followed by the TCT-04 group (hydroalcoholic Tara extract 1000 mg/mL). In addition, it was found that these groups are statist...