Mostrando 1 - 6 Resultados de 6 Para Buscar 'Rodrigues, Fabiano S.', tiempo de consulta: 0.01s Limitar resultados
1
artículo
Most of the low‐latitude ionospheric radar observations in South America come from the Jicamarca Radio Observatory, located in the western longitude sector (∼75°W). The deployment of the 30 MHz FAPESP Clemson‐INPE (FCI) coherent backscatter radar in the magnetic equatorial site of São Luis, Brazil, in 2001 allowed observations to be made in the eastern sector (∼45°W). However, despite being operational for several years (2001–2012), FCI only made observations during daytime and pre midnight hours, with a few exceptions. Here, we describe an upgraded system that replaced the FCI radar and present results of full‐night F‐region observations. This radar is referred to as Measurements of Equatorial and Low‐latitude Ionospheric irregularities over São Luís, South America (MELISSA), and made observations between March 2014 and December 2018. We present results of our analy...
2
artículo
Typical equatorial spread-F events are often said to occur during post-sunset, equinox conditions in most longitude sectors. Recent studies, however, have found an unexpected high occurrence of ionospheric F-region irregularities during June solstice, when conditions are believed to be unfavorable for the development of plasma instabilities responsible for equatorial spread-F (ESF). This study reports new results of a multi-instrumented investigation with the objective to better specify the occurrence of these atypical June solstice ESF in the American sector and better understand the conditions prior to their development. We present the first observations of June solstice ESF events over the Jicamarca Radio Observatory (11.95° S, 76.87° W, ∼ 1° dip latitude) made by a 14-panel version of the Advanced Modular Incoherent Scatter Radar system (AMISR-14). The observations were made b...
3
tesis doctoral
Radio waves are weakly scattered by thermal fluctuations in the quasiequilibrium ionospheric plasma. Coherent scatter echoes, meanwhile, are caused by non-thermal electron density fluctuations generated by plasma instabilities and are much stronger than incoherent scatter (IS) echoes. The spectra of IS echoes provide information about parameters of the background plasma such as electron density, temperatures, and ion composition. On the other hand, coherent scatter echoes provide an indication of the turbulent state of the ionospheric plasma. This dissertation describes coherent and incoherent backscatter radar observations of the F region ionosphere in the magnetic equatorial region using the Jicamarca IS radar in Peru and the Sao Lu ˜ ´ıs coherent backscatter radar in Brazil. The possibility of an alternative IS radar technique for topside ionosphere observations was investigated, a...
4
artículo
Previous studies of the Earth's low‐latitude ionosphere using in situ measurements made by sensors on the Communication/Navigation Outage Forecasting System (C/NOFS) satellite showed an unexpected predominance of equatorial spread F (ESF) events in the postmidnight sector during June and December solstice months of the 2008–2009 deep solar minimum. It has been suggested that these events might have been driven by the unusual behavior of the equatorial plasma drifts, which showed an abnormal upward peak around midnight during the same period. We use coherent backscatter radar (Jicamarca Unattended Long‐term Investigations of the Ionosphere and Atmosphere ‐ JULIA) measurements made at the Jicamarca Radio Observatory (11.95°S, 76.87°W, ∼1∘ dip lat) in Peru to better understand the origin of the ESF irregularities observed by C/NOFS. The radar observations show that ESF events ...
5
artículo
Coherent backscatter radar observations made at the Jicamarca Radio Observatory (JRO) have contributed significantly to our understanding of equatorial F-region irregularities. Radar observations, however, have been made predominantly at the Very-High Frequency (VHF) band (50 MHz), which corresponds to measurements of 3-m field-aligned irregularities. The deployment of the 14-panel version of the Advanced Modular Incoherent Scatter Radar (AMISR-14) at Jicamarca provided an opportunity for observations of Ultra-High Frequency (UHF - 445 MHz) echoes which correspond to measurements of irregularities with 0.34 m scale sizes. Here, we present what we believe to be the first report describing the quiet-time climatology of sub-meter equatorial F-region irregularities derived from UHF radar measurements. The measurements were made between August 2021 and February 2023 using a 10-beam AMISR-14 m...
6
artículo
As part of an effort to observe and study ionospheric disturbances and their effects on radio signals used by Global Navigation Satellite Systems (GNSS), alternative low-cost GNSS-based ionospheric scintillation and total electron content (TEC) monitors have been deployed over the American sector. During an inspection of the observations made on 28 August 2022, we found increases in the amplitude scintillation index (S4) reported by the monitors for the period between approximately 17:45 UT and 18:20 UT. The distributed, dual-frequency observations made by the sensors allowed us to determine that the increases in S4 were not caused by ionospheric irregularities. Instead, they resulted from Carrier-to-Noise (C/No) variations caused by a solar radio burst (SRB) event that followed the occurrence of two M-class X-ray solar flares and a Halo coronal mass ejection. The measurements also allow...