1
artículo
Publicado 2024
Enlace
Enlace
The low latitude ionosphere and thermosphere are strongly disturbed during and shortly after geomagnetic storms. We use novel Jicamarca radar measurements, ACE satellite solar wind, and SuperMAG geomagnetic field observations to study the electrodynamic response of the equatorial ionosphere to the 23, 24 April 2023 geomagnetic storm. We also compare our data with results from previous experimental and modeling studies of equatorial storm-time electrodynamics. We show, for the first time, unusually large equatorial vertical and zonal plasma drift (zonal and meridional electric field) perturbations driven simultaneously by multi storm-time electric field mechanisms during both the storm main and recovery phases. These include daytime undershielding and overshielding prompt penetration electric fields driven by solar wind electric fields and dynamic pressure changes, substorms, as well as d...
2
artículo
Publicado 2013
Enlace
Enlace
We use the measurements by the Vector Electric Field Investigation (VEFI) on board the Communication/Navigation Outage Forecasting System (C/NOFS) satellite to study the local time and seasonal‐ and longitudinal‐dependent climatology of equatorial F region zonal plasma drifts during 2008–2011. These drifts are essentially westward during the day and eastward at night. Over Jicamarca Radio Observatory, the satellite measurements are in good agreement with incoherent scatter radar drifts. Our data show strong longitudinal variations, particularly in the South American sector during the solstices. The equinoctial data exhibit short‐lived and largely enhanced westward drifts near sunrise and wave‐4 structures from the early afternoon to late night equinoctial periods. The nighttime eastward drifts are largest near the western American sector at all seasons. The June solstice postmi...
3
artículo
Publicado 2015
Enlace
Enlace
We have used extensive radar measurements from the Jicamarca Observatory during low solar flux periods to study the quiet time variability and altitudinal dependence of equatorial daytime vertical and zonal plasma drifts. The daytime vertical drifts are upward and have largest values during September–October. The day‐to‐day variability of these drifts does not change with height between 150 and 600 km, but the bimonthly variability is much larger in the F region than below about 200 km. These drifts vary linearly with height generally increasing in the morning and decreasing in the afternoon. The zonal drifts are westward during the day and have largest values during July–October. The 150 km region zonal drifts have much larger day‐to‐day, but much smaller bimonthly variability than the F region drifts. The daytime zonal drifts strongly increase with height up to about ...
4
artículo
Publicado 2018
Enlace
Enlace
Typical equatorial spread-F events are often said to occur during post-sunset, equinox conditions in most longitude sectors. Recent studies, however, have found an unexpected high occurrence of ionospheric F-region irregularities during June solstice, when conditions are believed to be unfavorable for the development of plasma instabilities responsible for equatorial spread-F (ESF). This study reports new results of a multi-instrumented investigation with the objective to better specify the occurrence of these atypical June solstice ESF in the American sector and better understand the conditions prior to their development. We present the first observations of June solstice ESF events over the Jicamarca Radio Observatory (11.95° S, 76.87° W, ∼ 1° dip latitude) made by a 14-panel version of the Advanced Modular Incoherent Scatter Radar system (AMISR-14). The observations were made b...
5
artículo
Publicado 2019
Enlace
Enlace
Most of the low‐latitude ionospheric radar observations in South America come from the Jicamarca Radio Observatory, located in the western longitude sector (∼75°W). The deployment of the 30 MHz FAPESP Clemson‐INPE (FCI) coherent backscatter radar in the magnetic equatorial site of São Luis, Brazil, in 2001 allowed observations to be made in the eastern sector (∼45°W). However, despite being operational for several years (2001–2012), FCI only made observations during daytime and pre midnight hours, with a few exceptions. Here, we describe an upgraded system that replaced the FCI radar and present results of full‐night F‐region observations. This radar is referred to as Measurements of Equatorial and Low‐latitude Ionospheric irregularities over São Luís, South America (MELISSA), and made observations between March 2014 and December 2018. We present results of our analy...