1
artículo
Publicado 2019
Enlace

The alpaca (Vicugna pacos) is an economically important and cultural signature species in Peru. Thus, molecular genomic information about the genes underlying the traits of interest, such as fiber properties and color, is critical for improved breeding and management schemes. Current knowledge about the alpaca genome, particularly the chromosomal location of such genes of interest is limited and lags far behind other livestock species. The main objective of this work was to localize alpaca candidate genes for fiber growth and color using fluorescence in situ hybridization (FISH). We report the mapping of candidate genes for fiber growth COL1A1, CTNNB1, DAB2IP, KRT15, KRTAP13-1, and TNFSF12 to chromosomes 16, 17, 4, 16, 1, and 16, respectively. Likewise, we report the mapping of candidate genes for fiber color ALX3, NCOA6, SOX9, ZIC1, and ZIC5 to chromosomes 9, 19, 16, 1, and 14, respecti...
2
artículo
Publicado 2020
Enlace

Complex structural X chromosome abnormalities are rare in humans and animals, and not recurrent. Yet, each case provides a fascinating opportunity to evaluate X chromosome content and functional status in relation to the effect on the phenotype. Here, we report the first equine case of a complex unbalanced X-autosome rearrangement in a healthy but short in stature Thoroughbred mare. Studies of about 200 cells by chromosome banding and FISH revealed an abnormal 2n=63,X,der(X;16) karyotype with a large dicentric derivative chromosome (der). The der was comprised of normal Xp material, a palindromic duplication of Xq12q21, and a translocation of chromosome 16 to the inverted Xq12q21 segment by the centromere, whereas the distal Xq22q29 was deleted from the der. Microsatellite genotyping determined a paternal origin of the der. While there was no option to experimentally investigate the stat...
3
artículo
Universidad Nacional Agraria La Molina. Escuela de Posgrado. Maestría en Producción Animal
4
artículo
Publicado 2020
Enlace

We report 2 novel autosomal translocations in the horse. In Case 1, a breeding stallion with a balanced t(4p;30) had produced normal foals and those with congenital abnormalities. Of his 9 phenotypically normal offspring, 4 had normal karyotypes, 4 had balanced t(4p;30), and 1 carried an unbalanced translocation with tertiary trisomy of 4p. We argue that unbalanced forms of t(4p;30) are more tolerated and result in viable congenital abnormalities, without causing embryonic death like all other known equine autosomal translocations. In Case 2, two stallions produced by somatic cell nuclear transfer from the same donor were karyotyped because of fertility issues. A balanced translocation t(12q;25) was found in one, but not in the other clone. The findings underscore the importance of routine cytogenetic screening of breeding animals and animals produced by assisted reproductive technologie...