1
artículo
Publicado 2020
Enlace
Enlace
In this work we study the existence, uniqueness and continuous dependence of the solution of the KdV-Kuramoto-Sivashinsky homogeneous linear equation in periodic Sobolev spaces. We do this using semigroup theory and Fourier theory on periodic distributions. Also, using the immersions between the Sobolev spaces we obtain regularity additional properties. Furthermore, we proved some claims done in [8].Finally, we analyze the behavior of the solution with respect to one parameter, proving that its limit is the solution of a Cauchy problem whose associated semigroup is the restriction of a group.
2
artículo
Publicado 2021
Enlace
Enlace
In this article we will study the local well-posedness for a non-linear Cauchy problem associated with the differential equation KdV- Kuramoto-Sivashinsky: in the infinite dimensional spaces (periodic sobolev) H sper. We do this using the theory of C0- semigrupos, main properties of the Fourier transform in H sper, as the inmersions in these spaces and that H s-1per is a Banach algebra, which allows us to justify the presence of the non-linearity .
3
artículo
Publicado 2020
Enlace
Enlace
In this work we study the existence, uniqueness and continuous dependence of the solution of the KdV-Kuramoto-Sivashinsky homogeneous linear equation in periodic Sobolev spaces. We do this using semigroup theory and Fourier theory on periodic distributions. Also, using the immersions between the Sobolev spaces we obtain regularity additional properties. Furthermore, we proved some claims done in [8].Finally, we analyze the behavior of the solution with respect to one parameter, proving that its limit is the solution of a Cauchy problem whose associated semigroup is the restriction of a group.
4
tesis de maestría
Publicado 2019
Enlace
Enlace
Estudia la regularidad, existencia, unicidad y dependencia continua de la solución de la eucación lineal homogénea KdV-Kuramoto-Sivashinsky (P) ut + uxxx + β(uxxxx + uxx) = 0 en Hs−4 per con u(0) = φ ∈ Hs per considerando β una constante positiva, s un número real y denotando por Hs per al espacio de Sobolev periódico de orden s, siguiendo las ideas de [14]. Además, siguiendo estas ideas, incluimos el estudio de la buena colocación del problema de Cauchy asociado a la ecuación del calor y de la onda. Para esto usamos la teoría de Fourier, análisis armónico y la teoría de semigrupos de operadores lineales.