1
Publicado 2025
Enlace
Enlace
Este estudio desarrolló y validó un modelo predictivo de Machine Learning para anticipar la deserción de citas médicas en el Centro Nacional de Telemedicina (CENATE), donde este problema genera un significativo desperdicio de recursos. Tras analizar retrospectivamente más de 71,000 citas y entrenar múltiples algoritmos, se identificó que el modelo XGBoost presentó el mejor equilibrio global (F1-Score: 0.25; recall: 0.53), superando a otros como Random Forest y Regresión Logística. Si bien el modelo permite priorizar citas de alto riesgo, sus resultados confirman la dificultad de predecir este evento de baja prevalencia (7%) con datos principalmente administrativos, por lo que se concluye que para una futura implementación operativa es necesario enriquecer los predictores con variables clínicas o conductuales, calibrar los umbrales de decisión y optimizar las técnicas para e...