1
artÃculo
Publicado 2020
Enlace

Quantitative ultrasound has shown potential of improving medical diagnosis. In this work, a regularized power law (RPL) for the joint estimation of backscatter coefficient (BSC) and attenuation coefficient (AC) parameters was derived and tested with simulated phantoms and in vivo. For the RPL method, a total variation regularization term regarding the BSC and AC parameters were used. The results were compared with ground truth simulated values. An improvement of precision can be appreciated without compromising the accuracy by factor of 80% and 54% according to bias and coefficient of variation, respectively. The in vivo experiments showed comparable results of the algorithm with the literature (i.e. fibroadenoma:1.90 ± 0.31dB.cm-1.MHz-1, normal tissue: 0.62 ± 0.20dB.cm-1.MHz-1). The results suggest the RPL method has the potential to accurately and precisely estimating BSCs and ACs. Â...
2
artÃculo
Skin elastic properties change during a cutaneous disorder or in the aging process. Deep knowledge of skin layers helps monitoring and diagnosing structural changes. High frequency ultrasound (HF-US) has been recently introduced to diagnose and evaluate some dermatological disorders in the clinical practice. US elastography adds elasticity information of the analyzed tissue. In particular, harmonic elastography estimates the speed of shear waves produced by external vibration sources, in order to relate the shear wave speed to the Young's modulus. In the epidermis and dermis layers, shear waves are not generated; in contrast, surface acoustic waves (SAWs) exist as they propagate in the top of the tissue. This study uses crawling wave sonoelastography for the estimation of SAWs in human thigh dermis in vivo. Experiments were performed in ten volunteers in the range of 200 - 500 Hz. As oth...
3
artÃculo
Publicado 2018
Enlace

The H-scan analysis of ultrasound images is a matched-filter approach derived from analysis of scattering from incident pulses in the form of Gaussian-weighted Hermite polynomial functions. This framework is applied in a preliminary study of thyroid lesions to examine the H-scan outputs for three categories: normal thyroid, benign lesions, and cancerous lesions within a total group size of 46 patients. In addition, phantoms comprised of spherical scatterers are analyzed to establish independent reference values for comparison. The results demonstrate a small but significant difference in some measures of the H-scan channel outputs between the different groups.