Mostrando 1 - 3 Resultados de 3 Para Buscar 'Horna G.', tiempo de consulta: 0.03s Limitar resultados
1
revisión
Pseudomonas aeruginosa is an opportunistic pathogen, mainly affecting severe patients, such as those in intensive care units (ICUs). High levels of antibiotic resistance and a long battery of virulence factors characterise this pathogen. Among virulence factors, the T3SS (Type 3 Secretion Systems) are especially relevant, being one of the most important virulence factors in P. aeruginosa. T3SS are a complex “molecular syringe” able to inject different effectors in host cells, subverting cell machinery influencing immune responses, and increasing bacterial survival rates. While T3SS have been largely studied and the molecular structure and main effector functions have been established, a series of questions and further points remain to be clarified or established. The key role of T3SS in P. aeruginosa virulence has resulted in the search for T3SS-targeting molecules able to impair the...
2
revisión
Type 3 secretion systems (T3SSs) are a series of mechanisms involved in bacterial pathogenesis. While Pseudomonas aeruginosa only possess one T3SS, it plays a key role in the virulence of P. aeruginosa virulence. This finding suggests that T3SS impairment may be an alternative for antimicrobial agents, allowing P. aeruginosa infections to be directly combated avoiding antimicrobial pressure on this and other microorganisms. To date, different approaches have been proposed, including T3SS inhibition, vaccination strategies, development of anti-T3SS antibodies and gene silencing. © 2021 Elsevier Ltd
3
artículo
From its introduction in 1952 onwards, the clinical use of macrolides has been steadily increasing, both in human and veterinary medicine. Although initially designed to the treatment of Gram-positive microorganisms, this antimicrobial family has also been used to treat specific Gram-negative bacteria. Some of them, as azithromycin, are considered in the armamentarium against Enterobacteriaceae infections. However, the facility that this bacterial genus has to gain or develop mechanisms of antibiotic resistance may compromise the future usefulness of these antibiotics to fight against Enterobacteriaceae infections. The present review is focused on the mechanisms of macrolide resistance, currently described in Enterobacteriaceae.