Mostrando 1 - 4 Resultados de 4 Para Buscar 'Groves, K.', tiempo de consulta: 0.01s Limitar resultados
1
artículo
The need to nowcast and forecast scintillation for the support of operational systems has been recently identified by the interagency National Space Weather Program. This issue is addressed in the present paper in the context of nighttime irregularities in the equatorial ionosphere that cause intense amplitude and phase scintillations of satellite signals in the VHF/UHF range of frequencies and impact satellite communication, Global Positioning System navigation, and radar systems. Multistation and multifrequency satellite scintillation observations have been used to show that even though equatorial scintillations vary in accordance with the solar cycle, the extreme day-to-day variability of unknown origin modulates the scintillation occurrence during all phases of the solar cycle. It is shown that although equatorial scintillation events often show correlation with magnetic activity, th...
2
artículo
We have constructed latitudinal profiles of the total electron content (TEC) using measurements from six GPS receivers conducted during 1998. The TEC profiles have been divided into two groups: One corresponds to days when plumes or equatorial spread F (ESF) develops, and the second group portrays days of no-ESF condition. The presence/absence of ESF is based on the signature of the coherent echoes measured by the Jicamarca Unattended Long-Term Investigation (JULIA) radar and records of scintillations from two sites spaced in latitude. One scintillation station is located near the magnetic equator (Ancon) and the other 12° southward (Antofagasta). The TEC profiles display the typical day-to-day and seasonal variability seen at low latitudes. During the equinoxes, we observed quite often the crests of the anomaly located between 12° and 20° away from the magnetic equator and a trough i...
3
artículo
Since their discovery in the 1970s, equatorial plasma bubbles (EPBs) have been invoked to explain the propagation of VHF signals on trans‐equatorial circuits at night, and blamed for highly detrimental scintillation of VHF and GHz trans‐ionospheric communications signals in equatorial regions. Over the last four decades, the properties of EPBs have been deduced by multiple techniques such as incoherent scatter radar, 630 nm airglow, depletions in GPS total electron content observations, VHF and GHz scintillations, and HF observations by ionosondes. The initiation and evolution of EPBs have by now been successfully modeled and a good understanding developed of the underlying physics. However, different communities tend to concentrate on a single observing technique, without regard to whether the different techniques provide a consistent physical picture. In contrast, this paper disc...
4
artículo
An analysis of the occurrence of equatorial plasma bubbles (EPBs) around the world during the 2015 St. Patrick's Day geomagnetic storm is presented. A network of 12 Global Positioning System receivers spanning from South America to Southeast Asia was used, in addition to colocated VHF receivers at three stations and four nearby ionosondes. The suppression of postsunset EPBs was observed across most longitudes over 2 days. The EPB observations were compared to calculations of the linear Rayleigh‐Taylor growth rate using coupled thermosphere‐ionosphere modeling, which successfully modeled the transition of favorable EPB growth from postsunset to postmidnight hours during the storm. The mechanisms behind the growth of postmidnight EPBs during this storm were investigated. While the latter stages of postmidnight EPB growth were found to be dominated by disturbance dynamo effects, the ini...