1
artículo
Publicado 2013
Enlace

Since their discovery in the 1970s, equatorial plasma bubbles (EPBs) have been invoked to explain the propagation of VHF signals on trans‐equatorial circuits at night, and blamed for highly detrimental scintillation of VHF and GHz trans‐ionospheric communications signals in equatorial regions. Over the last four decades, the properties of EPBs have been deduced by multiple techniques such as incoherent scatter radar, 630 nm airglow, depletions in GPS total electron content observations, VHF and GHz scintillations, and HF observations by ionosondes. The initiation and evolution of EPBs have by now been successfully modeled and a good understanding developed of the underlying physics. However, different communities tend to concentrate on a single observing technique, without regard to whether the different techniques provide a consistent physical picture. In contrast, this paper disc...
2
artículo
Publicado 2016
Enlace

An analysis of the occurrence of equatorial plasma bubbles (EPBs) around the world during the 2015 St. Patrick's Day geomagnetic storm is presented. A network of 12 Global Positioning System receivers spanning from South America to Southeast Asia was used, in addition to colocated VHF receivers at three stations and four nearby ionosondes. The suppression of postsunset EPBs was observed across most longitudes over 2 days. The EPB observations were compared to calculations of the linear Rayleigh‐Taylor growth rate using coupled thermosphere‐ionosphere modeling, which successfully modeled the transition of favorable EPB growth from postsunset to postmidnight hours during the storm. The mechanisms behind the growth of postmidnight EPBs during this storm were investigated. While the latter stages of postmidnight EPB growth were found to be dominated by disturbance dynamo effects, the ini...