Mostrando 1 - 14 Resultados de 14 Para Buscar 'Goncharenko, L.', tiempo de consulta: 0.04s Limitar resultados
1
objeto de conferencia
The stratospheric sudden warming peaking in January 2009 was the strongest and most prolonged on record. We report significant ionospheric variations is association with this event, which are especially pronounced at low latitudes. Large increase in the vertical drifts is observed at Jicamarca, displaying 12-hour signature with upward drifts in the morning hours and downward drifts in the afternoon hours, with pattern persisting for several days. Analysis of GPS TEC data indicates that variations in electron density are observed in a large range of longitudes and latitudes. The entire daytime ionosphere is affected, with morning increase in low-latitude TEC exceeding 100% of the mean value, and afternoon decrease in TEC approaching ~50% of the mean value. These variations are consistent with ionospheric disturbances observed during other stratospheric warming events. We suggest the obser...
2
ponencia
Diapositivas presentadas en: CEDAR Workshop 2009 del 28 de junio al 2 de julio de 2009 en Santa Fe, Nuevo México, USA.
3
artículo
A major sudden stratospheric warming (SSW) occurred in January 2013 during moderate-to-high solar activity conditions. Observations during the winter of 2012/2013 reveal strong ionospheric disturbances associated with this event. Anomalous variations in vertical ion drift measured at the geomagnetic equator at Jicamarca (12°S, 77°W) are observed for over 40 days. We report strong perturbations in the total electron content (TEC) that maximize in the crests of equatorial ionization anomaly, reach 100% of the background value, exhibit significant longitudinal and hemispheric asymmetry, and last for over 40 days. The magnitude of ionospheric anomalies in both vertical drifts and TEC is comparable to the anomalies observed during the record-strong SSW of January 2009 that coincided with the extreme solar minimum. This observation contrasts with results of numerical simulations that predict...
4
objeto de conferencia
Recent studies have shown large variations in low-latitude ionospheric parameters occurring after stratospheric sudden warming events. We use observations of vertical ion drift from Jicamarca ISR and GPS total electron content data in the Western Hemisphere for winters of 2008-2009 and 2009-2010 to illustrate main features of ionospheric changes related to stratospheric sudden warmings. The common feature in all events is the increase in the electron density during the morning hours and the decrease in the afternoon, related to amplification of 12-hour signature in low-latitude vertical ion drifts. This feature persists for several days after the peak in stratospheric temperature. The observed phenomena is related to quasistationary planetary waves, which have a high amplitude level prior to the stratospheric warmings. Non-linear interaction of planetary waves with tides leading to incre...
5
artículo
This paper describes the ionospheric response to a geomagnetic storm beginning on 17 April 2002. We present the measurements of ionospheric parameters in the F-region obtained by the network of eight incoherent scatter radars. The main effects of this storm include a deep decrease in the electron density observed at high and middle latitudes in the pre-noon sector, and a minor enhancement in the density observed in the daytime sector at middle latitudes. Extreme plasma heating (>1000-3000 K) is observed at high latitudes, subsiding to 200-300K at subauroral latitudes. The western hemisphere radar chain observed the prompt penetration of the electric field from auroral to equatorial latitudes, as well as the daytime enhancement of plasma drift parallel to the magnetic field line, which is related to the enhancement in the equatorward winds. We suggest that in the first several hours after...
6
ponencia
Diapositivas presentadas en: CEDAR Workshop 2009 del 28 de junio al 2 de julio de 2009 en Santa Fe, Nuevo México, USA.
7
ponencia
Diapositivas presentadas en First Latin American, FMT Workshop 2010, Ica, Peru, November 22- 26, 2010.
8
ponencia
9
ponencia
Diapositivas presentadas en: CEDAR Workshop 2009 del 28 de junio al 2 de julio de 2009 en Santa Fe, Nuevo México, USA.
10
objeto de conferencia
Póster presentado en: CEDAR Workshop 2009 del 28 de junio al 2 de julio de 2009 en Santa Fe, Nuevo México, USA.
11
ponencia
Diapositivas presentadas en el 2010 CEDAR Workshop, University of Colorado, Boulder, CO, 20-25 June 2010.
12
artículo
We present observations of the F‐region ionosphere over Arecibo, Puerto Rico (18.34°N, 66.75°W), during the January–February 2008 and January–February 2009 sudden stratospheric warming (SSW) events. For the first period (2008), we have used incoherent scatter radar (ISR) electron density and temperature measurements from the Arecibo Observatory (AO), as well as relative total electron content (TEC) derived from a dual‐frequency GPS receiver. For the second event (2009), during which we observed the largest recorded stratospheric warming, we have used the relative GPS TEC. Our analysis indicates that the ionosphere over Arecibo exhibits perturbations after the SSW, the effects are most visible during the daytime. The strongest signatures are observed in the TEC measurements, represented by large enhancements (with respect to non SSW days), particularly during daytime hours. Howe...
13
ponencia
Diapositivas presentadas en 2009 Joint Assembly. The Meeting of the Americas. 24-27 May 2009. Toronto, Ontario, Canada.
14
artículo
During geomagnetically quiet and solar minimum conditions, spatial variations of the early morning thermosphere‐ionosphere (TI) system are expected to be mainly governed by wave dynamics. To study the postmidnight dynamical coupling, we investigated the early morning equatorial ionization anomaly (EIA) using Global‐scale Observations of the Limb and Disk (GOLD) measurements of OI‐135.6 nm nightglow emission and global navigation satellite system (GNSS)‐based total electron content (TEC) maps. The EIA structures in the OI‐135.6 nm emission over the American landmass resemble, spatially and temporally, those observed in the GNSS‐TEC maps. The early morning EIA (EM‐EIA) crests are well separated in latitude and mostly located over the middle of South America during October–November. In February–April the crests are less separated in latitude and predominantly located over ...