1
artículo
El objetivo de este artículo es realizar una reflexión teórica sobre dos Actividades de Estudio e Investigación -AEI, que se centran en la construcción de fórmulas para el cálculo de medidas de volumen. El primero trata de una fórmula para calcular la medida del volumen de un tetraedro regular construido a partir de un cubo y el segundo de una fórmula para calcular la medida del volumen de un octaedro obtenido al truncar un tetraedro regular. La reflexión se realizó a partir de una articulación entre geometría y álgebra a partir de las aprehensiones de una figura, en términos de Registros de Representación Semiótica y de las cuatro fases del proceso de modelización algebraica. El movimiento de construcciones geométricas, realizado en GeoGebra, junto con el lenguaje natural, permiten el desarrollo de aprehensiones de figuras, la percepción de relaciones entre partes de...
2
artículo
El presente artículo es uno de los resultados de un proyecto de investigación conjunto entre los grupos PEA-MAT y DIMAT, respectivamente, de la PUC-SP y la PUCP, que tiene como objetivo presentar dos organizaciones matemáticas locales relacionadas con la enseñanza de sistemas de ecuaciones lineales. El marco teórico es la Teoría Antropológica de la Didáctica de Chevallard y la motivación de dicho estudio fue la comprobación de que tanto los profesores que participaron en la formación continua en el ámbito de este proyecto como los libros de texto de los dos países privilegian el conocimiento de este contenido sin explicar sus justificaciones. Presentamos aquí dos praxeologías locales a partir de dos tareas y posibles técnicas para resolverlas, justificándolas a través de un discurso tecnológico-teórico, en general, ausente en la enseñanza de dichos contenidos.
3
artículo
Publicado 2019
Enlace
Enlace
The objective of this article is to present an extension of the Duval study in relation to the apprehensions in the graphic register of a function of two variables, to analyze a didactic situation and to investigate the articulations of the apprehensions in the study of the partial derivative. Its relevance in the teaching-learning of the Differential Calculus of two variables is wide, since the information that the graph provides is important for the construction of knowledge of functions of two variables. Our research is qualitative, specifically, aspects of the didactic engineering of Michèle Artigue. It was found that the articulation of the apprehensions in the graphic registry, mediated by the Mathematica software, allowed the students to conjecture properties, apply them in optimization problems and adapt to solve these problems geometrically.
4
artículo
Publicado 2019
Enlace
Enlace
El objetivo de este artículo es presentar una extensión del estudio de Duval en relación con las aprehensiones en el registro gráfico de una función de dos variables, analizar una situación didáctica e investigar las articulaciones de las aprehensiones en el estudio de la derivada parcial. Su pertinencia en la enseñanzaaprendizaje del Cálculo Diferencial de dos variables es amplia, puesto que la información que el gráfico proporciona es importante para la construcción de conocimientos de funciones de dos variables. Nuestra investigación es cualitativa, concretamente, aspectos de la Ingeniería Didáctica de Michèle Artigue. Se constató que la articulación de las aprehensiones en el registro gráfico, mediado por el software Mathematica, permitió a los alumnos conjeturar propiedades, aplicarlas en problemas de optimización y adaptarse a resolver geométricamente dichos p...
5
artículo
Publicado 2019
Enlace
Enlace
The objective of this article is to present an extension of the Duval study in relation to the apprehensions in the graphic register of a function of two variables, to analyze a didactic situation and to investigate the articulations of the apprehensions in the study of the partial derivative. Its relevance in the teaching-learning of the Differential Calculus of two variables is wide, since the information that the graph provides is important for the construction of knowledge of functions of two variables. Our research is qualitative, specifically, aspects of the didactic engineering of Michèle Artigue. It was found that the articulation of the apprehensions in the graphic registry, mediated by the Mathematica software, allowed the students to conjecture properties, apply them in optimization problems and adapt to solve these problems geometrically.