1
artículo
Publicado 2021
Enlace

We used reanalyzed Jicamarca radar measurements to study the response of equatorial ionospheric electrodynamics and spread F during the main phase of the large September 2017 geomagnetic storm. Our observations near dusk on 7 September show very large upward drifts followed by a large short-lived downward drift perturbation that completely suppressed the lower F region plasma irregularities and severely decreased the backscattered power from the higher altitude spread F. We suggest that this large short-lived westward electric field perturbation is most likely of magnetospheric origin and is due to a sudden and very strong magnetic field reconfiguration. Later in the early night period, data indicate large, mostly upward, drift perturbations generally consistent with standard undershielding and overshielding electric field effects, but with amplitudes significantly larger than expected. ...
2
artículo
We use Jicamarca incoherent scatter radar measurements to study for the first time the altitudinal variations of late afternoon and early night equatorial F region vertical plasma drifts. We also present the initial vertical drift measurements over the altitudinal range from about 200 to 2000 km. These data show that the afternoon drifts decrease weakly with altitude. Near their evening prereversal enhancements, the vertical drifts generally increase with altitude below about the F layer peak, decrease with height near the F layer peak and above, and are nearly height independent in the (solar flux dependent) topside ionosphere. The transition altitudes from height‐decreasing to height‐independent evening upward drifts decrease with altitude from solar maximum to solar minimum. After their reversal to downward, the vertical drifts do not change much with height. The altitudinal dep...
3
objeto de conferencia
We propose to use Jicamarca radar observations during the World Day periods together with data from the San Marco satellite for the study of equatorial electrodynamics. These incoherent scatter World Day experiments are usually conducted during two or three yearly campaigns of two to three days each, and about 10 campaigns of about a day. These periods are selected from the times when the IMP-6 satellite is in the solar wind and can therefore provide the interplanetary magnetic field parameters.
4
artículo
Publicado 2019
Enlace

We present the results of an analysis of long-term measurements of ionospheric F region E × B plasma drifts in the American/Peruvian sector. The analysis used observations made between 1986 and 2017 by the incoherent scatter radar of the Jicamarca Radio Observatory. Unlike previous studies, we analyzed both vertical and zonal components of the plasma drifts to derive the geomagnetically quiet time climatological variation of the drifts as a function of height and local time. We determine the average behavior of the height profiles of the drifts for different seasons and distinct solar flux conditions. Our results show good agreement with previous height-averaged climatological results of vertical and zonal plasma drifts, despite that they are obtained from different sets of measurements. More importantly, our results quantify average height variations in the drifts. The results show, fo...
5
6
ponencia
Diapositivas presentadas en: CEDAR Workshop 2009 del 28 de junio al 2 de julio de 2009 en Santa Fe, Nuevo México, USA.
7
artículo
Publicado 2013
Enlace

We use ground-based and satellite measurements to examine, for the first time, the characteristics of equatorial electrodynamic perturbations measured during the 2002 major and 2010 minor Southern Hemisphere sudden stratospheric warming (SSW) events. Our data suggest the occurrence of enhanced quasi-two fluctuations during the 2002 early autumnal equinoctial warming. They also show a moderately large multi-day perturbation pattern, resembling those during arctic SSW events, during 2002 late equinox, as the major SSW was weakening. We also compare these data with extensive recent results that showed the fundamentally important role of lunar semidiurnal tidal effects on low latitude electrodynamic perturbations during of arctic SSW events.
8
artículo
Publicado 2013
Enlace

An investigation of low‐latitude sporadic E layers during magnetic storms shows that the formation and disruption of these layers are strongly controlled by the magnetospheric electric fields that penetrate to equatorial ionosphere. It is observed that a prompt penetration electric field (PPEF) of westward polarity that dominates the nightside ionosphere can cause formation of sporadic E layers near 100 km, while a PPEF of eastward polarity that dominates the dayside and eveningside can lead to disruption of an Es layer in progress. It is shown that a vertical Hall electric field, induced by the primary zonal PPEF, in the presence of the storm‐associated enhanced conductivity of the night E layer, can be responsible for vertical ion velocity convergence sufficient to influence the Es layer formation. A downward polarity of the Hall electric field leads to Es layer formation, while ...
9
objeto de conferencia
Publicado 2009
Enlace

Póster presentado en: CEDAR Workshop 2009 del 28 de junio al 2 de julio de 2009 en Santa Fe, Nuevo México, USA.
10
ponencia
Publicado 2009
Enlace

Diapositivas presentadas en 2009 Joint Assembly. The Meeting of the Americas. 24-27 May 2009. Toronto, Ontario, Canada.
11
artículo
Publicado 1986
Enlace

During the Condor campaign a number of instruments were set up in Peru to support the rocket experiments. In this series of papers we report on the results of the experiments designed to study the equatorial F region. In this overview paper we summarize the main results as well as report upon the macroscopic developments of spread F as evidenced by data from backscatter radars, from scintillation observations, and from digital ionosonde meaurements. In this latter regard, we argue here that at least two factors other than the classical gravitational Rayleigh-Taylor plasma instability process must operate to yield the longest-scale horizontal organization of spread F structures. The horizontal scale typical of plume separation distances can be explained by invoking the effect of a shear in the plasma flow, although detailed comparison with theory seems to require shear frequencies a bit h...