1
artículo
Publicado 2016
Enlace
Enlace
This paper presents the interrelationship between the equatorial electrojet (EEJ) strength, Global Positioning System (GPS)‐derived total electron content (TEC), and postsunset scintillation from ground observations with the aim of finding reliable precursors of the occurrence of ionospheric irregularities. Mutual relationship studies provide a possible route to predict the occurrence of TEC fluctuation and scintillation in the ionosphere during the late afternoon and night respectively based on daytime measurement of the equatorial ionosphere. Data from ground based observations in the low latitudes of the west American longitude sector were examined during the 2008 solar minimum. We find a strong relationship exists between the noontime equatorial electrojet and GPS‐derived TEC distributions during the afternoon mediated by vertical E × B drift via the fountain effect, but the...
2
artículo
Publicado 2021
Enlace
Enlace
We used reanalyzed Jicamarca radar measurements to study the response of equatorial ionospheric electrodynamics and spread F during the main phase of the large September 2017 geomagnetic storm. Our observations near dusk on 7 September show very large upward drifts followed by a large short-lived downward drift perturbation that completely suppressed the lower F region plasma irregularities and severely decreased the backscattered power from the higher altitude spread F. We suggest that this large short-lived westward electric field perturbation is most likely of magnetospheric origin and is due to a sudden and very strong magnetic field reconfiguration. Later in the early night period, data indicate large, mostly upward, drift perturbations generally consistent with standard undershielding and overshielding electric field effects, but with amplitudes significantly larger than expected. ...