1
artículo
Publicado 2014
Enlace
Enlace
The dynamics of flat subduction, particularly the interaction between a flat slab and the overriding plate, are poorly understood. Here we study the (seismically) anisotropic properties and deformational regime of the mantle directly above the Peruvian flat slab. We analyze shear wave splitting from 370 local S events at 49 stations across southern Peru. We find that the mantle above the flat slab appears to be anisotropic, with modest average delay times (~0.28 s) that are consistent with ~4% anisotropy in a ~30 km thick mantle layer. The most likely mechanism is the lattice‐preferred orientation of olivine, which suggests that the observed splitting pattern preserves information about the mantle deformation. We observe a pronounced change in anisotropy along strike, with predominately trench‐parallel fast directions in the north and more variable orientations in the south, whic...
2
artículo
Publicado 2016
Enlace
Enlace
The Central Andean Plateau, the second‐highest plateau on Earth, overlies the subduction of the Nazca Plate beneath the central portion of South America. The origin of the high topography remains poorly understood, and this puzzle is intimately tied to unanswered questions about processes in the upper mantle, including possible removal of the overriding plate lithosphere and interaction with the flow field that results from the driving forces associated with subduction. Observations of seismic anisotropy can provide important constraints on mantle flow geometry in subduction systems. The interpretation of seismic anisotropy measurements in subduction settings can be challenging, however, because different parts of the subduction system may contribute, including the overriding plate, the mantle wedge above the slab, the slab itself, and the deep upper mantle beneath the slab. Here we pr...