1
tesis de grado
Publicado 2023
Enlace
Enlace
Implementa una metodología basada en Deep Learning para el diagnóstico de cáncer de mama, la cual consta de una serie de fases: el preprocesamiento de imágenes mamográficas de los datasets públicos mini-MIAS y mini-DDSM para eliminar el ruido; el aumento del conjunto de datos mediante el uso de la librería Augmentor Python; la puesta en marcha de los modelos de red neuronal convolucional utilizando arquitecturas denominadas EfficientNetB5, EfficientNetB6 y EfficientNetB7; y, por último, el uso de una red neuronal densa que recibe como entradas las probabilidades obtenidas de cada modelo de red, y devuelve como salidas las probabilidades que tiene una imagen mamográfica de ser maligno y benigno. El modelo implementado alcanzó una sensibilidad de 99.86%, especificidad de 99.90% y precisión de 99.75%.