Mostrando 1 - 2 Resultados de 2 Para Buscar 'Arcila Diaz, Liliana Nataly', tiempo de consulta: 0.09s Limitar resultados
1
tesis de grado
La producción de mango es esencial para la economía agrícola. La estimación precisa de su producción optimiza la planificación y logística de la cosecha. Sin embargo, los métodos tradicionales son ineficientes y propensos a errores. En este estudio se analizó la detección de frutos de mango mediante algoritmos de aprendizaje automático, específicamente YOLO versión 8 y Faster R-CNN. Para el entrenamiento de los modelos, se utilizó un conjunto de datos inicial de 212 imágenes con 9,604 anotaciones, el cual fue ampliado a 2,449 imágenes y 116,654 anotaciones con el objetivo de mejorar la robustez y la capacidad de generalización de los modelos. En la detección de frutos, YOLO alcanzó una precisión del 96.72%, un recall del 77.4% y un F1 Score del 86%, superando a Faster R-CNN, que logró una precisión del 98.57%, un recall del 63.80% y un F1 Score del 77.46%. YOLO demu...
2
tesis de grado
La estimación precisa de la producción de cultivos frutales es crucial para mejorar la planificación agrícola, optimizando la cosecha, el almacenamiento y la distribución, y, en última instancia, gestionando de manera más eficiente la cadena de suministro agrícola. Este estudio presenta una revisión sistemática sobre el uso de métodos de inteligencia artificial (IA) y machine learning (ML) en la estimación de la producción de cultivos frutales. Aplicando la metodología PRISMA, se identificaron 266 documentos en las bases de datos Scopus y Web of Science, de los cuales se analizaron 21 tras aplicar criterios de inclusión y exclusión. La investigación examina qué cultivos frutales utilizan técnicas de machine learning para la estimación de producción y qué técnicas muestran el mejor desempeño en la estimación o conteo de cultivos. Se identificaron tendencias emerge...