1
artículo
Publicado 2019
Enlace
Enlace
In this work, we present a brief introduction to Symplectic Geometry relating its origin with the Physics. Then we present the formal definition of symplectic manifold and some important results, with this we consider a function AH;N defined in the Cartesian product of the symplectic manifold (ℝ2n; ω0). Here we make an analysis with the fact that the critical points of this function are related in a biunivocal way to the fixed points of the flow Φt of the symplectic manifold (ℝ2n; ω0)in time t = 1 this thanks to the Hamiltonian diferential equations via the generating functions.
2
artículo
Publicado 2019
Enlace
Enlace
In this work, we present a brief introduction to Symplectic Geometry relating its origin with the Physics. Then we present the formal definition of symplectic manifold and some important results, with this we consider a function AH;N defined in the Cartesian product of the symplectic manifold (ℝ2n; ω0). Here we make an analysis with the fact that the critical points of this function are related in a biunivocal way to the fixed points of the flow Φt of the symplectic manifold (ℝ2n; ω0)in time t = 1 this thanks to the Hamiltonian diferential equations via the generating functions.
3
tesis doctoral
Publicado 2019
Enlace
Enlace
Estudia el comportamiento de una hamiltoniana Ht : R2n → R tiempo dependiente, 1-periódica. El objetivo es definir y calcular la homología de Morse en una variedad simpléctica no compuesta.
4
artículo
In this paper we study the generalized Hyers-Ulam stability of the quadratic-additive functional equation in a Non-Archimedean Banach space, using the direct method and the fixed point.
5
artículo
Publicado 2013
Enlace
Enlace
En este trabajo presentamos el estudio de la estabilidad generalizada de Hyers-Ulam, de la ecuación funcional cuadrática-aditiva en un espacio de Banach No-Arquimediano, utilizando el método directo y del punto fijo.