Forecasting photovoltaic power using bagging feed-forward neural network

Descripción del Articulo

ABSTRACT This paper presents a forecast model of the active power of a photovoltaic (PV) power generation system. In this model, a feed-forward neural network (FNN) is combined with bootstrap aggregation techniques using the Box–Cox transformation, seasonal and trend decomposition using Loess, and a...

Descripción completa

Detalles Bibliográficos
Autores: Zarate, E. J., Palumbo, M., Motta, A. L. T., Grados, J. H.
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/26746
Enlace del recurso:https://hdl.handle.net/11537/26746
Nivel de acceso:acceso abierto
Materia:Electricidad
Energía solar
Recursos energéticos renovables
Consumo de energía
https://purl.org/pe-repo/ocde/ford#2.11.00
Descripción
Sumario:ABSTRACT This paper presents a forecast model of the active power of a photovoltaic (PV) power generation system. In this model, a feed-forward neural network (FNN) is combined with bootstrap aggregation techniques using the Box–Cox transformation, seasonal and trend decomposition using Loess, and a moving block bootstrap (MBB) technique. An analysis is conducted using the data provided by the active power of the PV power generation system; the data are collected every 30 min for 12 months. The FNN method combined with MBB techniques consistently outperformed the original FNN in terms of forecasting accuracy based on the root mean squared error, on the forecast from one day of anticipation. The results are statistically significant as demonstrated through the Ljung–Box test, which verifies that the forecast errors are not correlated, thereby validating the proposed model.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).