Forecasting photovoltaic power using bagging feed-forward neural network

Descripción del Articulo

ABSTRACT This paper presents a forecast model of the active power of a photovoltaic (PV) power generation system. In this model, a feed-forward neural network (FNN) is combined with bootstrap aggregation techniques using the Box–Cox transformation, seasonal and trend decomposition using Loess, and a...

Descripción completa

Detalles Bibliográficos
Autores: Zarate, E. J., Palumbo, M., Motta, A. L. T., Grados, J. H.
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/26746
Enlace del recurso:https://hdl.handle.net/11537/26746
Nivel de acceso:acceso abierto
Materia:Electricidad
Energía solar
Recursos energéticos renovables
Consumo de energía
https://purl.org/pe-repo/ocde/ford#2.11.00
id UUPN_aac6c90d24753640d66b6cd2762b67e8
oai_identifier_str oai:repositorio.upn.edu.pe:11537/26746
network_acronym_str UUPN
network_name_str UPN-Institucional
repository_id_str 1873
dc.title.es_PE.fl_str_mv Forecasting photovoltaic power using bagging feed-forward neural network
title Forecasting photovoltaic power using bagging feed-forward neural network
spellingShingle Forecasting photovoltaic power using bagging feed-forward neural network
Zarate, E. J.
Electricidad
Energía solar
Recursos energéticos renovables
Consumo de energía
https://purl.org/pe-repo/ocde/ford#2.11.00
title_short Forecasting photovoltaic power using bagging feed-forward neural network
title_full Forecasting photovoltaic power using bagging feed-forward neural network
title_fullStr Forecasting photovoltaic power using bagging feed-forward neural network
title_full_unstemmed Forecasting photovoltaic power using bagging feed-forward neural network
title_sort Forecasting photovoltaic power using bagging feed-forward neural network
author Zarate, E. J.
author_facet Zarate, E. J.
Palumbo, M.
Motta, A. L. T.
Grados, J. H.
author_role author
author2 Palumbo, M.
Motta, A. L. T.
Grados, J. H.
author2_role author
author
author
dc.contributor.author.fl_str_mv Zarate, E. J.
Palumbo, M.
Motta, A. L. T.
Grados, J. H.
dc.subject.es_PE.fl_str_mv Electricidad
Energía solar
Recursos energéticos renovables
Consumo de energía
topic Electricidad
Energía solar
Recursos energéticos renovables
Consumo de energía
https://purl.org/pe-repo/ocde/ford#2.11.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.00
description ABSTRACT This paper presents a forecast model of the active power of a photovoltaic (PV) power generation system. In this model, a feed-forward neural network (FNN) is combined with bootstrap aggregation techniques using the Box–Cox transformation, seasonal and trend decomposition using Loess, and a moving block bootstrap (MBB) technique. An analysis is conducted using the data provided by the active power of the PV power generation system; the data are collected every 30 min for 12 months. The FNN method combined with MBB techniques consistently outperformed the original FNN in terms of forecasting accuracy based on the root mean squared error, on the forecast from one day of anticipation. The results are statistically significant as demonstrated through the Ljung–Box test, which verifies that the forecast errors are not correlated, thereby validating the proposed model.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-06-08T02:28:12Z
dc.date.available.none.fl_str_mv 2021-06-08T02:28:12Z
dc.date.issued.fl_str_mv 2020-09-17
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Zarate, E. ...[et al]. (2020). Forecasting photovoltaic power using bagging feed-forward neural network. International Journal of Mechanical and Production Engineering Research and Development, 10(3), 12479–12488. http://www.tjprc.org/publishpapers/2-67-1599902532-1188.IJMPERDJUN20201188.pdf
dc.identifier.issn.none.fl_str_mv 2249–6890
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11537/26746
dc.identifier.journal.es_PE.fl_str_mv International Journal of Mechanical and Production Engineering Research and Development
identifier_str_mv Zarate, E. ...[et al]. (2020). Forecasting photovoltaic power using bagging feed-forward neural network. International Journal of Mechanical and Production Engineering Research and Development, 10(3), 12479–12488. http://www.tjprc.org/publishpapers/2-67-1599902532-1188.IJMPERDJUN20201188.pdf
2249–6890
International Journal of Mechanical and Production Engineering Research and Development
url https://hdl.handle.net/11537/26746
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Transstellar Journal Publications and Research Consultancy Private Limited
dc.publisher.country.es_PE.fl_str_mv IN
dc.source.es_PE.fl_str_mv Universidad Privada del Norte
Repositorio Institucional - UPN
dc.source.none.fl_str_mv reponame:UPN-Institucional
instname:Universidad Privada del Norte
instacron:UPN
instname_str Universidad Privada del Norte
instacron_str UPN
institution UPN
reponame_str UPN-Institucional
collection UPN-Institucional
bitstream.url.fl_str_mv https://repositorio.upn.edu.pe/bitstream/11537/26746/1/Forecasting%20photovoltaic%20power%20using%20bagging%20feed-forward%20neural%20network.pdf
https://repositorio.upn.edu.pe/bitstream/11537/26746/3/license.txt
https://repositorio.upn.edu.pe/bitstream/11537/26746/2/license_rdf
https://repositorio.upn.edu.pe/bitstream/11537/26746/4/Forecasting%20photovoltaic%20power%20using%20bagging%20feed-forward%20neural%20network.pdf.txt
https://repositorio.upn.edu.pe/bitstream/11537/26746/5/Forecasting%20photovoltaic%20power%20using%20bagging%20feed-forward%20neural%20network.pdf.jpg
bitstream.checksum.fl_str_mv ecefb0ee5521e2ac30d777e77a0baee8
8a4605be74aa9ea9d79846c1fba20a33
80294ba9ff4c5b4f07812ee200fbc42f
7e2916b4dc0a88674cf6a23433cf83b3
3d149f22aca8257989988f682600c1d5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UPN
repository.mail.fl_str_mv jordan.rivero@upn.edu.pe
_version_ 1752944304525934592
spelling Zarate, E. J.Palumbo, M.Motta, A. L. T.Grados, J. H.2021-06-08T02:28:12Z2021-06-08T02:28:12Z2020-09-17Zarate, E. ...[et al]. (2020). Forecasting photovoltaic power using bagging feed-forward neural network. International Journal of Mechanical and Production Engineering Research and Development, 10(3), 12479–12488. http://www.tjprc.org/publishpapers/2-67-1599902532-1188.IJMPERDJUN20201188.pdf2249–6890https://hdl.handle.net/11537/26746International Journal of Mechanical and Production Engineering Research and DevelopmentABSTRACT This paper presents a forecast model of the active power of a photovoltaic (PV) power generation system. In this model, a feed-forward neural network (FNN) is combined with bootstrap aggregation techniques using the Box–Cox transformation, seasonal and trend decomposition using Loess, and a moving block bootstrap (MBB) technique. An analysis is conducted using the data provided by the active power of the PV power generation system; the data are collected every 30 min for 12 months. The FNN method combined with MBB techniques consistently outperformed the original FNN in terms of forecasting accuracy based on the root mean squared error, on the forecast from one day of anticipation. The results are statistically significant as demonstrated through the Ljung–Box test, which verifies that the forecast errors are not correlated, thereby validating the proposed model.Los Olivosapplication/pdfengTransstellar Journal Publications and Research Consultancy Private LimitedINinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de AméricaAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNElectricidadEnergía solarRecursos energéticos renovablesConsumo de energíahttps://purl.org/pe-repo/ocde/ford#2.11.00Forecasting photovoltaic power using bagging feed-forward neural networkinfo:eu-repo/semantics/articleORIGINALForecasting photovoltaic power using bagging feed-forward neural network.pdfForecasting photovoltaic power using bagging feed-forward neural network.pdfapplication/pdf551028https://repositorio.upn.edu.pe/bitstream/11537/26746/1/Forecasting%20photovoltaic%20power%20using%20bagging%20feed-forward%20neural%20network.pdfecefb0ee5521e2ac30d777e77a0baee8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/26746/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/26746/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52TEXTForecasting photovoltaic power using bagging feed-forward neural network.pdf.txtForecasting photovoltaic power using bagging feed-forward neural network.pdf.txtExtracted texttext/plain28794https://repositorio.upn.edu.pe/bitstream/11537/26746/4/Forecasting%20photovoltaic%20power%20using%20bagging%20feed-forward%20neural%20network.pdf.txt7e2916b4dc0a88674cf6a23433cf83b3MD54THUMBNAILForecasting photovoltaic power using bagging feed-forward neural network.pdf.jpgForecasting photovoltaic power using bagging feed-forward neural network.pdf.jpgGenerated Thumbnailimage/jpeg4776https://repositorio.upn.edu.pe/bitstream/11537/26746/5/Forecasting%20photovoltaic%20power%20using%20bagging%20feed-forward%20neural%20network.pdf.jpg3d149f22aca8257989988f682600c1d5MD5511537/26746oai:repositorio.upn.edu.pe:11537/267462021-07-31 18:22:30.898Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.936249
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).