Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting
Descripción del Articulo
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2017 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/622276 |
| Enlace del recurso: | http://hdl.handle.net/10757/622276 |
| Nivel de acceso: | acceso abierto |
| Materia: | Adenosine deaminase activity Mycobacterium tuberculosis Pleural tuberculosis Score Cells and cell components Chemical analysis |
| id |
UUPC_ab0d090f234abc1789c8c56019d3591a |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/622276 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es.fl_str_mv |
Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting |
| title |
Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting |
| spellingShingle |
Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting Solari, Lely Adenosine deaminase activity Mycobacterium tuberculosis Pleural tuberculosis Score Cells and cell components Chemical analysis |
| title_short |
Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting |
| title_full |
Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting |
| title_fullStr |
Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting |
| title_full_unstemmed |
Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting |
| title_sort |
Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting |
| author |
Solari, Lely |
| author_facet |
Solari, Lely Soto, Alonso Van der Stuyft, Patrick |
| author_role |
author |
| author2 |
Soto, Alonso Van der Stuyft, Patrick |
| author2_role |
author author |
| dc.contributor.institution.none.fl_str_mv |
Unit of General Epidemiology and Disease Control; Institute of Tropical Medicine of Antwerp; Antwerp Belgium Escuela de Medicina; Universidad Peruana de Ciencias Aplicadas; Lima Peru Unit of General Epidemiology and Disease Control; Institute of Tropical Medicine of Antwerp; Antwerp Belgium |
| dc.contributor.email.es_PE.fl_str_mv |
alonso.soto@upc.edu.pe |
| dc.contributor.author.fl_str_mv |
Solari, Lely Soto, Alonso Van der Stuyft, Patrick |
| dc.subject.es.fl_str_mv |
Adenosine deaminase activity Mycobacterium tuberculosis Pleural tuberculosis Score Cells and cell components Chemical analysis |
| topic |
Adenosine deaminase activity Mycobacterium tuberculosis Pleural tuberculosis Score Cells and cell components Chemical analysis |
| description |
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2017-10-21T15:20:00Z |
| dc.date.available.none.fl_str_mv |
2017-10-21T15:20:00Z |
| dc.date.issued.fl_str_mv |
2017-10 |
| dc.type.es.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es.fl_str_mv |
Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting 2017, 22 (10):1283 Tropical Medicine & International Health |
| dc.identifier.issn.none.fl_str_mv |
13602276 |
| dc.identifier.doi.none.fl_str_mv |
10.1111/tmi.12932 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/622276 |
| dc.identifier.journal.es.fl_str_mv |
Tropical Medicine & International Health |
| identifier_str_mv |
Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting 2017, 22 (10):1283 Tropical Medicine & International Health 13602276 10.1111/tmi.12932 Tropical Medicine & International Health |
| url |
http://hdl.handle.net/10757/622276 |
| dc.language.iso.es.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es.fl_str_mv |
http://doi.wiley.com/10.1111/tmi.12932 |
| dc.rights.es.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.es.fl_str_mv |
application/pdf |
| dc.publisher.es.fl_str_mv |
John Wiley & Sons Ltd |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/622276/1/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/622276/2/10.1111%20tmi.12932.pdf https://repositorioacademico.upc.edu.pe/bitstream/10757/622276/3/10.1111%20tmi.12932.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/622276/4/10.1111%20tmi.12932.pdf.jpg |
| bitstream.checksum.fl_str_mv |
255616c2e22876c8a237cd50f1bc22a3 2226693be6c032efd7ab3b480dfdf134 db7aff7fad7d1676c99371750a2bcf27 c4dac9d33f7c995a2b8cb1dc378f9f1e |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846065341222879232 |
| spelling |
Solari, LelySoto, AlonsoVan der Stuyft, PatrickUnit of General Epidemiology and Disease Control; Institute of Tropical Medicine of Antwerp; Antwerp BelgiumEscuela de Medicina; Universidad Peruana de Ciencias Aplicadas; Lima PeruUnit of General Epidemiology and Disease Control; Institute of Tropical Medicine of Antwerp; Antwerp Belgiumalonso.soto@upc.edu.pe2017-10-21T15:20:00Z2017-10-21T15:20:00Z2017-10Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting 2017, 22 (10):1283 Tropical Medicine & International Health1360227610.1111/tmi.12932http://hdl.handle.net/10757/622276Tropical Medicine & International HealthEl texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.Objectives: Diagnosis of pleural tuberculosis (PT) is still a challenge, particularly in resource-constrained settings. Alternative diagnostic tools are needed. We aimed at evaluating the utility of Clinical Prediction Rules (CPRs) for diagnosis of pleural tuberculosis in Peru. Methods: We identified CPRs for diagnosis of PT through a structured literature search. CPRs using high-complexity tests, as defined by the FDA, were excluded. We applied the identified CPRs to patients with pleural exudates attending two third-level hospitals in Lima, Peru, a setting with high incidence of tuberculosis. Besides pleural fluid analysis, patients underwent closed pleural biopsy for reaching a final diagnosis through combining microbiological and histopathological criteria. We evaluated the performance of the CPRs against this composite reference standard using classic indicators of diagnostic test validity. Results: We found 15 eligible CPRs, of which 12 could be validated. Most included ADA, age, lymphocyte proportion and protein in pleural fluid as predictive findings. A total of 259 patients were included for their validation, of which 176 (67%) had PT and 50 (19%) malignant pleural effusion. The overall accuracy of the CPRs varied from 41% to 86%. Two had a positive likelihood ratio (LR) above 10, but none a negative LR below 0.1. ADA alone at a cut-off of ≥40 IU attained 87% diagnostic accuracy and had a positive LR of 6.6 and a negative LR of 0.2. Conclusion: Many CPRs for PT are available. In addition to ADA alone, none of them contributes significantly to diagnosis of PT.Revisión por paresapplication/pdfengJohn Wiley & Sons Ltdhttp://doi.wiley.com/10.1111/tmi.12932info:eu-repo/semantics/openAccessAdenosine deaminase activity7add2db2-2908-421a-93fe-6de092ad205c600Mycobacterium tuberculosis9bb1649a-b989-41ff-beae-cf0193a60257600Pleural tuberculosis8487a2a1-a7e2-43d1-bf9a-518fd0dd317a600Scoreb7948f0f-3d0c-47cf-958b-c835d7ca8edb600Cells and cell components5bca2a20-66c1-4ffd-8ec5-4537574ec7a9600Chemical analysis86755082-0689-42d5-b991-57781b740ee4600Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence settinginfo:eu-repo/semantics/articlereponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2018-06-18T10:21:04ZObjectives: Diagnosis of pleural tuberculosis (PT) is still a challenge, particularly in resource-constrained settings. Alternative diagnostic tools are needed. We aimed at evaluating the utility of Clinical Prediction Rules (CPRs) for diagnosis of pleural tuberculosis in Peru. Methods: We identified CPRs for diagnosis of PT through a structured literature search. CPRs using high-complexity tests, as defined by the FDA, were excluded. We applied the identified CPRs to patients with pleural exudates attending two third-level hospitals in Lima, Peru, a setting with high incidence of tuberculosis. Besides pleural fluid analysis, patients underwent closed pleural biopsy for reaching a final diagnosis through combining microbiological and histopathological criteria. We evaluated the performance of the CPRs against this composite reference standard using classic indicators of diagnostic test validity. Results: We found 15 eligible CPRs, of which 12 could be validated. Most included ADA, age, lymphocyte proportion and protein in pleural fluid as predictive findings. A total of 259 patients were included for their validation, of which 176 (67%) had PT and 50 (19%) malignant pleural effusion. The overall accuracy of the CPRs varied from 41% to 86%. Two had a positive likelihood ratio (LR) above 10, but none a negative LR below 0.1. ADA alone at a cut-off of ≥40 IU attained 87% diagnostic accuracy and had a positive LR of 6.6 and a negative LR of 0.2. Conclusion: Many CPRs for PT are available. In addition to ADA alone, none of them contributes significantly to diagnosis of PT.LICENSElicense.txtlicense.txttext/plain; charset=utf-81702https://repositorioacademico.upc.edu.pe/bitstream/10757/622276/1/license.txt255616c2e22876c8a237cd50f1bc22a3MD51falseORIGINAL10.1111 tmi.12932.pdf10.1111 tmi.12932.pdfapplication/pdf282259https://repositorioacademico.upc.edu.pe/bitstream/10757/622276/2/10.1111%20tmi.12932.pdf2226693be6c032efd7ab3b480dfdf134MD52trueTEXT10.1111 tmi.12932.pdf.txt10.1111 tmi.12932.pdf.txtExtracted Texttext/plain3590https://repositorioacademico.upc.edu.pe/bitstream/10757/622276/3/10.1111%20tmi.12932.pdf.txtdb7aff7fad7d1676c99371750a2bcf27MD53falseTHUMBNAIL10.1111 tmi.12932.pdf.jpg10.1111 tmi.12932.pdf.jpgGenerated Thumbnailimage/jpeg78810https://repositorioacademico.upc.edu.pe/bitstream/10757/622276/4/10.1111%20tmi.12932.pdf.jpgc4dac9d33f7c995a2b8cb1dc378f9f1eMD54false10757/622276oai:repositorioacademico.upc.edu.pe:10757/6222762019-08-30 07:56:08.895Repositorio académico upcupc@openrepository.comTk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKQnkgc2lnbmluZyBhbmQgc3VibWl0dGluZyB0aGlzIGxpY2Vuc2UsIHlvdSAodGhlIGF1dGhvcihzKSBvciBjb3B5cmlnaHQKb3duZXIpIGdyYW50cyB0byB0aGUgPE1ZIElOU1RBTkNFIE5BTUU+ICg8SUQ+KSB0aGUgbm9uLWV4Y2x1c2l2ZSByaWdodCB0byByZXByb2R1Y2UsCnRyYW5zbGF0ZSAoYXMgZGVmaW5lZCBiZWxvdyksIGFuZC9vciBkaXN0cmlidXRlIHlvdXIgc3VibWlzc2lvbiAoaW5jbHVkaW5nCnRoZSBhYnN0cmFjdCkgd29ybGR3aWRlIGluIHByaW50IGFuZCBlbGVjdHJvbmljIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bSwKaW5jbHVkaW5nIGJ1dCBub3QgbGltaXRlZCB0byBhdWRpbyBvciB2aWRlby4KCllvdSBhZ3JlZSB0aGF0IDxJRD4gbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgPElEPiBtYXkga2VlcCBtb3JlIHRoYW4gb25lIGNvcHkgb2YgdGhpcyBzdWJtaXNzaW9uIGZvcgpwdXJwb3NlcyBvZiBzZWN1cml0eSwgYmFjay11cCBhbmQgcHJlc2VydmF0aW9uLgoKWW91IHJlcHJlc2VudCB0aGF0IHRoZSBzdWJtaXNzaW9uIGlzIHlvdXIgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQgeW91IGhhdmUKdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gWW91IGFsc28gcmVwcmVzZW50CnRoYXQgeW91ciBzdWJtaXNzaW9uIGRvZXMgbm90LCB0byB0aGUgYmVzdCBvZiB5b3VyIGtub3dsZWRnZSwgaW5mcmluZ2UgdXBvbgphbnlvbmUncyBjb3B5cmlnaHQuCgpJZiB0aGUgc3VibWlzc2lvbiBjb250YWlucyBtYXRlcmlhbCBmb3Igd2hpY2ggeW91IGRvIG5vdCBob2xkIGNvcHlyaWdodCwKeW91IHJlcHJlc2VudCB0aGF0IHlvdSBoYXZlIG9idGFpbmVkIHRoZSB1bnJlc3RyaWN0ZWQgcGVybWlzc2lvbiBvZiB0aGUKY29weXJpZ2h0IG93bmVyIHRvIGdyYW50IDxJRD4gdGhlIHJpZ2h0cyByZXF1aXJlZCBieSB0aGlzIGxpY2Vuc2UsIGFuZCB0aGF0CnN1Y2ggdGhpcmQtcGFydHkgb3duZWQgbWF0ZXJpYWwgaXMgY2xlYXJseSBpZGVudGlmaWVkIGFuZCBhY2tub3dsZWRnZWQKd2l0aGluIHRoZSB0ZXh0IG9yIGNvbnRlbnQgb2YgdGhlIHN1Ym1pc3Npb24uCgpJRiBUSEUgU1VCTUlTU0lPTiBJUyBCQVNFRCBVUE9OIFdPUksgVEhBVCBIQVMgQkVFTiBTUE9OU09SRUQgT1IgU1VQUE9SVEVECkJZIEFOIEFHRU5DWSBPUiBPUkdBTklaQVRJT04gT1RIRVIgVEhBTiA8SUQ+LCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgo8SUQ+IHdpbGwgY2xlYXJseSBpZGVudGlmeSB5b3VyIG5hbWUocykgYXMgdGhlIGF1dGhvcihzKSBvciBvd25lcihzKSBvZiB0aGUKc3VibWlzc2lvbiwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGFsdGVyYXRpb24sIG90aGVyIHRoYW4gYXMgYWxsb3dlZCBieSB0aGlzCmxpY2Vuc2UsIHRvIHlvdXIgc3VibWlzc2lvbi4KCiAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgCg== |
| score |
13.890581 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).