Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation

Descripción del Articulo

At present there are several problems that affect students and their academic performance such as low socioeconomic status that can cause lack of resources both in their homes and in the school. In addition to psychological and personal problems in which students can be involved. According to variou...

Descripción completa

Detalles Bibliográficos
Autores: Rojas-Salvatierra, Nancy, Parodi-Roman, Lucas, Montalvo, Peter
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676031
Enlace del recurso:http://hdl.handle.net/10757/676031
Nivel de acceso:acceso embargado
Materia:Agglomerative Clustering
Artificial Intelligence
Clustering
Education
K-Means
Low Performance
Machine Learning
Students
id UUPC_7b70e331ab722ccaa52bd2329af4ae1a
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676031
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation
title Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation
spellingShingle Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation
Rojas-Salvatierra, Nancy
Agglomerative Clustering
Artificial Intelligence
Clustering
Education
K-Means
Low Performance
Machine Learning
Students
title_short Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation
title_full Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation
title_fullStr Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation
title_full_unstemmed Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation
title_sort Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation
author Rojas-Salvatierra, Nancy
author_facet Rojas-Salvatierra, Nancy
Parodi-Roman, Lucas
Montalvo, Peter
author_role author
author2 Parodi-Roman, Lucas
Montalvo, Peter
author2_role author
author
dc.contributor.author.fl_str_mv Rojas-Salvatierra, Nancy
Parodi-Roman, Lucas
Montalvo, Peter
dc.subject.es_PE.fl_str_mv Agglomerative Clustering
Artificial Intelligence
Clustering
Education
K-Means
Low Performance
Machine Learning
Students
topic Agglomerative Clustering
Artificial Intelligence
Clustering
Education
K-Means
Low Performance
Machine Learning
Students
description At present there are several problems that affect students and their academic performance such as low socioeconomic status that can cause lack of resources both in their homes and in the school. In addition to psychological and personal problems in which students can be involved. According to various national and international examinations the academic level in Peru is quite low because the problems mentioned above are difficult to identify, it is not possible to propose a viable solution, which is why we propose a Machine Learning model based on Clustering algorithms such as KMeans, Birch and Aglomerative that manage to group students by the most relevant characteristics or disadvantages they present.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-06T11:34:05Z
dc.date.available.none.fl_str_mv 2024-10-06T11:34:05Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 2184772X
dc.identifier.doi.none.fl_str_mv 10.5220/0012814200003764
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676031
dc.identifier.journal.es_PE.fl_str_mv ICSBT International Conference on Smart Business Technologies
dc.identifier.eid.none.fl_str_mv 2-s2.0-85202340347
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85202340347
identifier_str_mv 2184772X
10.5220/0012814200003764
ICSBT International Conference on Smart Business Technologies
2-s2.0-85202340347
SCOPUS_ID:85202340347
url http://hdl.handle.net/10757/676031
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Science and Technology Publications, Lda
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv ICSBT International Conference on Smart Business Technologies
dc.source.beginpage.none.fl_str_mv 37
dc.source.endpage.none.fl_str_mv 43
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676031/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846066052419551232
spelling 9d9120d674bea4b5ade15b165b4e963c300cfb912ed53e534b95d8f35276d51bd96300b7366586a5d42e91e5e0038942550663300Rojas-Salvatierra, NancyParodi-Roman, LucasMontalvo, Peter2024-10-06T11:34:05Z2024-10-06T11:34:05Z2024-01-012184772X10.5220/0012814200003764http://hdl.handle.net/10757/676031ICSBT International Conference on Smart Business Technologies2-s2.0-85202340347SCOPUS_ID:85202340347At present there are several problems that affect students and their academic performance such as low socioeconomic status that can cause lack of resources both in their homes and in the school. In addition to psychological and personal problems in which students can be involved. According to various national and international examinations the academic level in Peru is quite low because the problems mentioned above are difficult to identify, it is not possible to propose a viable solution, which is why we propose a Machine Learning model based on Clustering algorithms such as KMeans, Birch and Aglomerative that manage to group students by the most relevant characteristics or disadvantages they present.application/htmlengScience and Technology Publications, Ldainfo:eu-repo/semantics/embargoedAccessAgglomerative ClusteringArtificial IntelligenceClusteringEducationK-MeansLow PerformanceMachine LearningStudentsClassification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluationinfo:eu-repo/semantics/articleICSBT International Conference on Smart Business Technologies3743reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676031/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676031oai:repositorioacademico.upc.edu.pe:10757/6760312024-10-06 11:34:07.51Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).