Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation
Descripción del Articulo
At present there are several problems that affect students and their academic performance such as low socioeconomic status that can cause lack of resources both in their homes and in the school. In addition to psychological and personal problems in which students can be involved. According to variou...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676031 |
| Enlace del recurso: | http://hdl.handle.net/10757/676031 |
| Nivel de acceso: | acceso embargado |
| Materia: | Agglomerative Clustering Artificial Intelligence Clustering Education K-Means Low Performance Machine Learning Students |
| id |
UUPC_7b70e331ab722ccaa52bd2329af4ae1a |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676031 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation |
| title |
Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation |
| spellingShingle |
Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation Rojas-Salvatierra, Nancy Agglomerative Clustering Artificial Intelligence Clustering Education K-Means Low Performance Machine Learning Students |
| title_short |
Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation |
| title_full |
Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation |
| title_fullStr |
Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation |
| title_full_unstemmed |
Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation |
| title_sort |
Classification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluation |
| author |
Rojas-Salvatierra, Nancy |
| author_facet |
Rojas-Salvatierra, Nancy Parodi-Roman, Lucas Montalvo, Peter |
| author_role |
author |
| author2 |
Parodi-Roman, Lucas Montalvo, Peter |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Rojas-Salvatierra, Nancy Parodi-Roman, Lucas Montalvo, Peter |
| dc.subject.es_PE.fl_str_mv |
Agglomerative Clustering Artificial Intelligence Clustering Education K-Means Low Performance Machine Learning Students |
| topic |
Agglomerative Clustering Artificial Intelligence Clustering Education K-Means Low Performance Machine Learning Students |
| description |
At present there are several problems that affect students and their academic performance such as low socioeconomic status that can cause lack of resources both in their homes and in the school. In addition to psychological and personal problems in which students can be involved. According to various national and international examinations the academic level in Peru is quite low because the problems mentioned above are difficult to identify, it is not possible to propose a viable solution, which is why we propose a Machine Learning model based on Clustering algorithms such as KMeans, Birch and Aglomerative that manage to group students by the most relevant characteristics or disadvantages they present. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-10-06T11:34:05Z |
| dc.date.available.none.fl_str_mv |
2024-10-06T11:34:05Z |
| dc.date.issued.fl_str_mv |
2024-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
2184772X |
| dc.identifier.doi.none.fl_str_mv |
10.5220/0012814200003764 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676031 |
| dc.identifier.journal.es_PE.fl_str_mv |
ICSBT International Conference on Smart Business Technologies |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85202340347 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85202340347 |
| identifier_str_mv |
2184772X 10.5220/0012814200003764 ICSBT International Conference on Smart Business Technologies 2-s2.0-85202340347 SCOPUS_ID:85202340347 |
| url |
http://hdl.handle.net/10757/676031 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Science and Technology Publications, Lda |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
ICSBT International Conference on Smart Business Technologies |
| dc.source.beginpage.none.fl_str_mv |
37 |
| dc.source.endpage.none.fl_str_mv |
43 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676031/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846066052419551232 |
| spelling |
9d9120d674bea4b5ade15b165b4e963c300cfb912ed53e534b95d8f35276d51bd96300b7366586a5d42e91e5e0038942550663300Rojas-Salvatierra, NancyParodi-Roman, LucasMontalvo, Peter2024-10-06T11:34:05Z2024-10-06T11:34:05Z2024-01-012184772X10.5220/0012814200003764http://hdl.handle.net/10757/676031ICSBT International Conference on Smart Business Technologies2-s2.0-85202340347SCOPUS_ID:85202340347At present there are several problems that affect students and their academic performance such as low socioeconomic status that can cause lack of resources both in their homes and in the school. In addition to psychological and personal problems in which students can be involved. According to various national and international examinations the academic level in Peru is quite low because the problems mentioned above are difficult to identify, it is not possible to propose a viable solution, which is why we propose a Machine Learning model based on Clustering algorithms such as KMeans, Birch and Aglomerative that manage to group students by the most relevant characteristics or disadvantages they present.application/htmlengScience and Technology Publications, Ldainfo:eu-repo/semantics/embargoedAccessAgglomerative ClusteringArtificial IntelligenceClusteringEducationK-MeansLow PerformanceMachine LearningStudentsClassification of Peruvian Elementary School Students with Low Achievement Problems Using Clustering Algorithms and ERCE Evaluationinfo:eu-repo/semantics/articleICSBT International Conference on Smart Business Technologies3743reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676031/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676031oai:repositorioacademico.upc.edu.pe:10757/6760312024-10-06 11:34:07.51Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.945474 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).