Football Pitch Condition Analysis Based on k-Means Clustering

Descripción del Articulo

Football, a highly popular sport all over the world, requires that professional footballers practice it on a field of play in ideal conditions, which, among other things, includes the usage and maintenance of healthy natural grass. In this study, we present an unsupervised allocator strategy for ima...

Descripción completa

Detalles Bibliográficos
Autores: Ugarte Rojas, Héctor Eduardo, Chullo Llave, Boris
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:inglés
OAI Identifier:oai:revistas.ulima.edu.pe:article/5794
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5794
Nivel de acceso:acceso abierto
Materia:image analysis
k-means algorithm
dominant colors
clustering
football
análisis de imágenes
algoritmo k-means
colores dominantes
fútbol
Descripción
Sumario:Football, a highly popular sport all over the world, requires that professional footballers practice it on a field of play in ideal conditions, which, among other things, includes the usage and maintenance of healthy natural grass. In this study, we present an unsupervised allocator strategy for image analysis of football pitches that uses k-means clustering and color comparison to assess whether a playing field is in good or bad condition. Our approach considers proportions of dominant RGB colors for automatized decision-making. We developed a prototype and tested it with a series of images; this paper offers a comparison between the findings of this test and our expected results.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).