Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica
Descripción del Articulo
Activations of streams, known as Landslide, are natural events that cause considerable damage to property and infrastructure, causing losses of around 5 billion dollars, which negatively impacts the economic stability of the country and the people. In this work, a predictive analysis model based on...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676347 |
Enlace del recurso: | http://hdl.handle.net/10757/676347 |
Nivel de acceso: | acceso embargado |
Materia: | Chosica Landslide Machine learning Model Prediction |
id |
UUPC_71819142549d27b57e03de8dc5aa5674 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676347 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica |
title |
Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica |
spellingShingle |
Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica Alvarado Jimenez, Carlos Adrian Chosica Landslide Machine learning Model Prediction |
title_short |
Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica |
title_full |
Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica |
title_fullStr |
Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica |
title_full_unstemmed |
Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica |
title_sort |
Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica |
author |
Alvarado Jimenez, Carlos Adrian |
author_facet |
Alvarado Jimenez, Carlos Adrian Diaz Amaya, Edgar David Lo Coronado, Lyang Jazmin |
author_role |
author |
author2 |
Diaz Amaya, Edgar David Lo Coronado, Lyang Jazmin |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Alvarado Jimenez, Carlos Adrian Diaz Amaya, Edgar David Lo Coronado, Lyang Jazmin |
dc.subject.es_PE.fl_str_mv |
Chosica Landslide Machine learning Model Prediction |
topic |
Chosica Landslide Machine learning Model Prediction |
description |
Activations of streams, known as Landslide, are natural events that cause considerable damage to property and infrastructure, causing losses of around 5 billion dollars, which negatively impacts the economic stability of the country and the people. In this work, a predictive analysis model based on machine learning is proposed to predict the occurrence of Landslide in Chosica, Peru. The model was trained with data from hydrological and meteorological sensors and was able to identify behavioral patterns of the landslide with an accuracy of 85%. This study demonstrates that the proposed model is a viable tool that can perform an acceptable prediction rate with low error control. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-02T08:13:59Z |
dc.date.available.none.fl_str_mv |
2024-11-02T08:13:59Z |
dc.date.issued.fl_str_mv |
2024-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.18687/LACCEI2024.1.1.1571 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676347 |
dc.identifier.eissn.none.fl_str_mv |
24146390 |
dc.identifier.journal.es_PE.fl_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85203799805 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85203799805 |
identifier_str_mv |
10.18687/LACCEI2024.1.1.1571 24146390 Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology 2-s2.0-85203799805 SCOPUS_ID:85203799805 |
url |
http://hdl.handle.net/10757/676347 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676347/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1846066056372682752 |
spelling |
3ddf699a0560d78c675e7f12b25427053008247b566de76fa5260f41fab29f8a427576854fc64b7a0921d69cdd4de15311d300Alvarado Jimenez, Carlos AdrianDiaz Amaya, Edgar DavidLo Coronado, Lyang Jazmin2024-11-02T08:13:59Z2024-11-02T08:13:59Z2024-01-0110.18687/LACCEI2024.1.1.1571http://hdl.handle.net/10757/67634724146390Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology2-s2.0-85203799805SCOPUS_ID:85203799805Activations of streams, known as Landslide, are natural events that cause considerable damage to property and infrastructure, causing losses of around 5 billion dollars, which negatively impacts the economic stability of the country and the people. In this work, a predictive analysis model based on machine learning is proposed to predict the occurrence of Landslide in Chosica, Peru. The model was trained with data from hydrological and meteorological sensors and was able to identify behavioral patterns of the landslide with an accuracy of 85%. This study demonstrates that the proposed model is a viable tool that can perform an acceptable prediction rate with low error control.application/htmlengLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/embargoedAccessChosicaLandslideMachine learningModelPredictionPredictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosicainfo:eu-repo/semantics/articleProceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676347/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676347oai:repositorioacademico.upc.edu.pe:10757/6763472024-11-02 08:14:01.036Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.377112 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).