Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica

Descripción del Articulo

Activations of streams, known as Landslide, are natural events that cause considerable damage to property and infrastructure, causing losses of around 5 billion dollars, which negatively impacts the economic stability of the country and the people. In this work, a predictive analysis model based on...

Descripción completa

Detalles Bibliográficos
Autores: Alvarado Jimenez, Carlos Adrian, Diaz Amaya, Edgar David, Lo Coronado, Lyang Jazmin
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676347
Enlace del recurso:http://hdl.handle.net/10757/676347
Nivel de acceso:acceso embargado
Materia:Chosica
Landslide
Machine learning
Model
Prediction
id UUPC_71819142549d27b57e03de8dc5aa5674
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676347
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica
title Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica
spellingShingle Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica
Alvarado Jimenez, Carlos Adrian
Chosica
Landslide
Machine learning
Model
Prediction
title_short Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica
title_full Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica
title_fullStr Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica
title_full_unstemmed Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica
title_sort Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica
author Alvarado Jimenez, Carlos Adrian
author_facet Alvarado Jimenez, Carlos Adrian
Diaz Amaya, Edgar David
Lo Coronado, Lyang Jazmin
author_role author
author2 Diaz Amaya, Edgar David
Lo Coronado, Lyang Jazmin
author2_role author
author
dc.contributor.author.fl_str_mv Alvarado Jimenez, Carlos Adrian
Diaz Amaya, Edgar David
Lo Coronado, Lyang Jazmin
dc.subject.es_PE.fl_str_mv Chosica
Landslide
Machine learning
Model
Prediction
topic Chosica
Landslide
Machine learning
Model
Prediction
description Activations of streams, known as Landslide, are natural events that cause considerable damage to property and infrastructure, causing losses of around 5 billion dollars, which negatively impacts the economic stability of the country and the people. In this work, a predictive analysis model based on machine learning is proposed to predict the occurrence of Landslide in Chosica, Peru. The model was trained with data from hydrological and meteorological sensors and was able to identify behavioral patterns of the landslide with an accuracy of 85%. This study demonstrates that the proposed model is a viable tool that can perform an acceptable prediction rate with low error control.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-02T08:13:59Z
dc.date.available.none.fl_str_mv 2024-11-02T08:13:59Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.18687/LACCEI2024.1.1.1571
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676347
dc.identifier.eissn.none.fl_str_mv 24146390
dc.identifier.journal.es_PE.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.identifier.eid.none.fl_str_mv 2-s2.0-85203799805
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85203799805
identifier_str_mv 10.18687/LACCEI2024.1.1.1571
24146390
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
2-s2.0-85203799805
SCOPUS_ID:85203799805
url http://hdl.handle.net/10757/676347
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676347/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846066056372682752
spelling 3ddf699a0560d78c675e7f12b25427053008247b566de76fa5260f41fab29f8a427576854fc64b7a0921d69cdd4de15311d300Alvarado Jimenez, Carlos AdrianDiaz Amaya, Edgar DavidLo Coronado, Lyang Jazmin2024-11-02T08:13:59Z2024-11-02T08:13:59Z2024-01-0110.18687/LACCEI2024.1.1.1571http://hdl.handle.net/10757/67634724146390Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology2-s2.0-85203799805SCOPUS_ID:85203799805Activations of streams, known as Landslide, are natural events that cause considerable damage to property and infrastructure, causing losses of around 5 billion dollars, which negatively impacts the economic stability of the country and the people. In this work, a predictive analysis model based on machine learning is proposed to predict the occurrence of Landslide in Chosica, Peru. The model was trained with data from hydrological and meteorological sensors and was able to identify behavioral patterns of the landslide with an accuracy of 85%. This study demonstrates that the proposed model is a viable tool that can perform an acceptable prediction rate with low error control.application/htmlengLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/embargoedAccessChosicaLandslideMachine learningModelPredictionPredictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosicainfo:eu-repo/semantics/articleProceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676347/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676347oai:repositorioacademico.upc.edu.pe:10757/6763472024-11-02 08:14:01.036Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.377112
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).