Predictive analysis model to define behavioral patterns of landslide for early warning based on machine learning and data from hydrological and meteorological sensors in Chosica
Descripción del Articulo
Activations of streams, known as Landslide, are natural events that cause considerable damage to property and infrastructure, causing losses of around 5 billion dollars, which negatively impacts the economic stability of the country and the people. In this work, a predictive analysis model based on...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676347 |
Enlace del recurso: | http://hdl.handle.net/10757/676347 |
Nivel de acceso: | acceso embargado |
Materia: | Chosica Landslide Machine learning Model Prediction |
Sumario: | Activations of streams, known as Landslide, are natural events that cause considerable damage to property and infrastructure, causing losses of around 5 billion dollars, which negatively impacts the economic stability of the country and the people. In this work, a predictive analysis model based on machine learning is proposed to predict the occurrence of Landslide in Chosica, Peru. The model was trained with data from hydrological and meteorological sensors and was able to identify behavioral patterns of the landslide with an accuracy of 85%. This study demonstrates that the proposed model is a viable tool that can perform an acceptable prediction rate with low error control. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).