Exportación Completada — 

Machine Learning Model for Early-stage Melanoma Diagnosis

Descripción del Articulo

There are Machine Learning (ML) algorithms for the development of recognition and classification models for medical images, aiming to facilitate access to the healthcare sector.Therefore, this paper seeks to demonstrate the effectiveness of the Support Vector Machine (SVM) algorithm for classifying...

Descripción completa

Detalles Bibliográficos
Autores: Pardo Valdivia, Flavia, Valeria Villanueva Zárate, Natalia, Aliaga Cerna, Esther
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676332
Enlace del recurso:http://hdl.handle.net/10757/676332
Nivel de acceso:acceso embargado
Materia:Machine Learning
Melanoma
Skin Melanoma
Support Vector Machine
Descripción
Sumario:There are Machine Learning (ML) algorithms for the development of recognition and classification models for medical images, aiming to facilitate access to the healthcare sector.Therefore, this paper seeks to demonstrate the effectiveness of the Support Vector Machine (SVM) algorithm for classifying skin lesion images into Melanoma and Non-Melanoma categories.With this aim, an ML model was developed and trained using the Python programming language, SVM, and images from the ISIC 2019 and ISIC 2020 repositories.For model development, training, and testing, Amazon Web Services cloud services were employed, yielding results of 0.77 precision, 0.82 recall or sensitivity, 0.80 F1-Score, and 0.76 accuracy.These effectiveness metric results exceeding 0.75 or 75% endorse the suitability of the model for medical applications in the field of image recognition and classification.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).