Machine Learning Model for Early-stage Melanoma Diagnosis
Descripción del Articulo
There are Machine Learning (ML) algorithms for the development of recognition and classification models for medical images, aiming to facilitate access to the healthcare sector.Therefore, this paper seeks to demonstrate the effectiveness of the Support Vector Machine (SVM) algorithm for classifying...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676332 |
Enlace del recurso: | http://hdl.handle.net/10757/676332 |
Nivel de acceso: | acceso embargado |
Materia: | Machine Learning Melanoma Skin Melanoma Support Vector Machine |
id |
UUPC_6b36c34f97777387435e8539261449b8 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676332 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Machine Learning Model for Early-stage Melanoma Diagnosis |
title |
Machine Learning Model for Early-stage Melanoma Diagnosis |
spellingShingle |
Machine Learning Model for Early-stage Melanoma Diagnosis Pardo Valdivia, Flavia Machine Learning Melanoma Skin Melanoma Support Vector Machine |
title_short |
Machine Learning Model for Early-stage Melanoma Diagnosis |
title_full |
Machine Learning Model for Early-stage Melanoma Diagnosis |
title_fullStr |
Machine Learning Model for Early-stage Melanoma Diagnosis |
title_full_unstemmed |
Machine Learning Model for Early-stage Melanoma Diagnosis |
title_sort |
Machine Learning Model for Early-stage Melanoma Diagnosis |
author |
Pardo Valdivia, Flavia |
author_facet |
Pardo Valdivia, Flavia Valeria Villanueva Zárate, Natalia Aliaga Cerna, Esther |
author_role |
author |
author2 |
Valeria Villanueva Zárate, Natalia Aliaga Cerna, Esther |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pardo Valdivia, Flavia Valeria Villanueva Zárate, Natalia Aliaga Cerna, Esther |
dc.subject.es_PE.fl_str_mv |
Machine Learning Melanoma Skin Melanoma Support Vector Machine |
topic |
Machine Learning Melanoma Skin Melanoma Support Vector Machine |
description |
There are Machine Learning (ML) algorithms for the development of recognition and classification models for medical images, aiming to facilitate access to the healthcare sector.Therefore, this paper seeks to demonstrate the effectiveness of the Support Vector Machine (SVM) algorithm for classifying skin lesion images into Melanoma and Non-Melanoma categories.With this aim, an ML model was developed and trained using the Python programming language, SVM, and images from the ISIC 2019 and ISIC 2020 repositories.For model development, training, and testing, Amazon Web Services cloud services were employed, yielding results of 0.77 precision, 0.82 recall or sensitivity, 0.80 F1-Score, and 0.76 accuracy.These effectiveness metric results exceeding 0.75 or 75% endorse the suitability of the model for medical applications in the field of image recognition and classification. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-02T06:44:03Z |
dc.date.available.none.fl_str_mv |
2024-11-02T06:44:03Z |
dc.date.issued.fl_str_mv |
2024-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.18687/LACCEI2024.1.1.1830 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676332 |
dc.identifier.eissn.none.fl_str_mv |
24146390 |
dc.identifier.journal.es_PE.fl_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85203815713 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85203815713 |
identifier_str_mv |
10.18687/LACCEI2024.1.1.1830 24146390 Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology 2-s2.0-85203815713 SCOPUS_ID:85203815713 |
url |
http://hdl.handle.net/10757/676332 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676332/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837187188424441856 |
spelling |
2189a451182beff6ce5255c2081486e530030a8ee456c21c7e0382c0973b3bb26083008b6de6a7bfa8a170bf0fbcf6b54bd055500Pardo Valdivia, FlaviaValeria Villanueva Zárate, NataliaAliaga Cerna, Esther2024-11-02T06:44:03Z2024-11-02T06:44:03Z2024-01-0110.18687/LACCEI2024.1.1.1830http://hdl.handle.net/10757/67633224146390Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology2-s2.0-85203815713SCOPUS_ID:85203815713There are Machine Learning (ML) algorithms for the development of recognition and classification models for medical images, aiming to facilitate access to the healthcare sector.Therefore, this paper seeks to demonstrate the effectiveness of the Support Vector Machine (SVM) algorithm for classifying skin lesion images into Melanoma and Non-Melanoma categories.With this aim, an ML model was developed and trained using the Python programming language, SVM, and images from the ISIC 2019 and ISIC 2020 repositories.For model development, training, and testing, Amazon Web Services cloud services were employed, yielding results of 0.77 precision, 0.82 recall or sensitivity, 0.80 F1-Score, and 0.76 accuracy.These effectiveness metric results exceeding 0.75 or 75% endorse the suitability of the model for medical applications in the field of image recognition and classification.application/htmlspaLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/embargoedAccessMachine LearningMelanomaSkin MelanomaSupport Vector MachineMachine Learning Model for Early-stage Melanoma Diagnosisinfo:eu-repo/semantics/articleProceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676332/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676332oai:repositorioacademico.upc.edu.pe:10757/6763322024-11-02 06:44:06.012Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.889614 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).