Machine Learning Model for Early-stage Melanoma Diagnosis

Descripción del Articulo

There are Machine Learning (ML) algorithms for the development of recognition and classification models for medical images, aiming to facilitate access to the healthcare sector.Therefore, this paper seeks to demonstrate the effectiveness of the Support Vector Machine (SVM) algorithm for classifying...

Descripción completa

Detalles Bibliográficos
Autores: Pardo Valdivia, Flavia, Valeria Villanueva Zárate, Natalia, Aliaga Cerna, Esther
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676332
Enlace del recurso:http://hdl.handle.net/10757/676332
Nivel de acceso:acceso embargado
Materia:Machine Learning
Melanoma
Skin Melanoma
Support Vector Machine
id UUPC_6b36c34f97777387435e8539261449b8
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676332
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Machine Learning Model for Early-stage Melanoma Diagnosis
title Machine Learning Model for Early-stage Melanoma Diagnosis
spellingShingle Machine Learning Model for Early-stage Melanoma Diagnosis
Pardo Valdivia, Flavia
Machine Learning
Melanoma
Skin Melanoma
Support Vector Machine
title_short Machine Learning Model for Early-stage Melanoma Diagnosis
title_full Machine Learning Model for Early-stage Melanoma Diagnosis
title_fullStr Machine Learning Model for Early-stage Melanoma Diagnosis
title_full_unstemmed Machine Learning Model for Early-stage Melanoma Diagnosis
title_sort Machine Learning Model for Early-stage Melanoma Diagnosis
author Pardo Valdivia, Flavia
author_facet Pardo Valdivia, Flavia
Valeria Villanueva Zárate, Natalia
Aliaga Cerna, Esther
author_role author
author2 Valeria Villanueva Zárate, Natalia
Aliaga Cerna, Esther
author2_role author
author
dc.contributor.author.fl_str_mv Pardo Valdivia, Flavia
Valeria Villanueva Zárate, Natalia
Aliaga Cerna, Esther
dc.subject.es_PE.fl_str_mv Machine Learning
Melanoma
Skin Melanoma
Support Vector Machine
topic Machine Learning
Melanoma
Skin Melanoma
Support Vector Machine
description There are Machine Learning (ML) algorithms for the development of recognition and classification models for medical images, aiming to facilitate access to the healthcare sector.Therefore, this paper seeks to demonstrate the effectiveness of the Support Vector Machine (SVM) algorithm for classifying skin lesion images into Melanoma and Non-Melanoma categories.With this aim, an ML model was developed and trained using the Python programming language, SVM, and images from the ISIC 2019 and ISIC 2020 repositories.For model development, training, and testing, Amazon Web Services cloud services were employed, yielding results of 0.77 precision, 0.82 recall or sensitivity, 0.80 F1-Score, and 0.76 accuracy.These effectiveness metric results exceeding 0.75 or 75% endorse the suitability of the model for medical applications in the field of image recognition and classification.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-02T06:44:03Z
dc.date.available.none.fl_str_mv 2024-11-02T06:44:03Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.18687/LACCEI2024.1.1.1830
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676332
dc.identifier.eissn.none.fl_str_mv 24146390
dc.identifier.journal.es_PE.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.identifier.eid.none.fl_str_mv 2-s2.0-85203815713
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85203815713
identifier_str_mv 10.18687/LACCEI2024.1.1.1830
24146390
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
2-s2.0-85203815713
SCOPUS_ID:85203815713
url http://hdl.handle.net/10757/676332
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676332/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187188424441856
spelling 2189a451182beff6ce5255c2081486e530030a8ee456c21c7e0382c0973b3bb26083008b6de6a7bfa8a170bf0fbcf6b54bd055500Pardo Valdivia, FlaviaValeria Villanueva Zárate, NataliaAliaga Cerna, Esther2024-11-02T06:44:03Z2024-11-02T06:44:03Z2024-01-0110.18687/LACCEI2024.1.1.1830http://hdl.handle.net/10757/67633224146390Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology2-s2.0-85203815713SCOPUS_ID:85203815713There are Machine Learning (ML) algorithms for the development of recognition and classification models for medical images, aiming to facilitate access to the healthcare sector.Therefore, this paper seeks to demonstrate the effectiveness of the Support Vector Machine (SVM) algorithm for classifying skin lesion images into Melanoma and Non-Melanoma categories.With this aim, an ML model was developed and trained using the Python programming language, SVM, and images from the ISIC 2019 and ISIC 2020 repositories.For model development, training, and testing, Amazon Web Services cloud services were employed, yielding results of 0.77 precision, 0.82 recall or sensitivity, 0.80 F1-Score, and 0.76 accuracy.These effectiveness metric results exceeding 0.75 or 75% endorse the suitability of the model for medical applications in the field of image recognition and classification.application/htmlspaLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/embargoedAccessMachine LearningMelanomaSkin MelanomaSupport Vector MachineMachine Learning Model for Early-stage Melanoma Diagnosisinfo:eu-repo/semantics/articleProceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676332/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676332oai:repositorioacademico.upc.edu.pe:10757/6763322024-11-02 06:44:06.012Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.889614
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).