Thermographic image processing analysis in a solar concentrator with hard C-means clustering

Descripción del Articulo

Style transfer is a natural language processing generation task, it consists of substituting one given writing style for another one. In this work, we seek to perform informal-to-formal style transfers in the English language by using a style transfer model that takes advantage of the GPT-2. This pr...

Descripción completa

Detalles Bibliográficos
Autores: Flores, Marco A., Serrano, Fernando E., Cadena, Carlos, Alvarez, Jose C.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/669463
Enlace del recurso:http://hdl.handle.net/10757/669463
Nivel de acceso:acceso abierto
Materia:Analysis
Clustering
Digital image processing
Renewable energies
Solar energy
Thermographic image
id UUPC_5fbddf7a46138d9dbb1e0911f516e3b8
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/669463
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Thermographic image processing analysis in a solar concentrator with hard C-means clustering
title Thermographic image processing analysis in a solar concentrator with hard C-means clustering
spellingShingle Thermographic image processing analysis in a solar concentrator with hard C-means clustering
Flores, Marco A.
Analysis
Clustering
Digital image processing
Renewable energies
Solar energy
Thermographic image
title_short Thermographic image processing analysis in a solar concentrator with hard C-means clustering
title_full Thermographic image processing analysis in a solar concentrator with hard C-means clustering
title_fullStr Thermographic image processing analysis in a solar concentrator with hard C-means clustering
title_full_unstemmed Thermographic image processing analysis in a solar concentrator with hard C-means clustering
title_sort Thermographic image processing analysis in a solar concentrator with hard C-means clustering
author Flores, Marco A.
author_facet Flores, Marco A.
Serrano, Fernando E.
Cadena, Carlos
Alvarez, Jose C.
author_role author
author2 Serrano, Fernando E.
Cadena, Carlos
Alvarez, Jose C.
author2_role author
author
author
dc.contributor.author.fl_str_mv Flores, Marco A.
Serrano, Fernando E.
Cadena, Carlos
Alvarez, Jose C.
dc.subject.es_PE.fl_str_mv Analysis
Clustering
Digital image processing
Renewable energies
Solar energy
Thermographic image
topic Analysis
Clustering
Digital image processing
Renewable energies
Solar energy
Thermographic image
description Style transfer is a natural language processing generation task, it consists of substituting one given writing style for another one. In this work, we seek to perform informal-to-formal style transfers in the English language by using a style transfer model that takes advantage of the GPT-2. This process is shown in our web interface where the user input a informal message by text or voice. Our target audience are students and professionals in the need to improve the quality of their work by formalizing their texts. A style transfer is considered successful when the original semantic meaning of the message is preserved after the independent style has been replaced with a formal one with a high degree of grammatical correctness. This task is hindered by the scarcity of training and evaluation datasets alongside the lack of metrics. To accomplish this task, we opted to utilize OpenAI’s GPT-2 Transformer-based pre-trained model. To adapt the GPT-2 to our research, we fine-tuned the model with a parallel corpus containing informal text entries paired with the equivalent formal ones. We evaluate the fine-tuned model results with two specific metrics, formality and meaning preservation. To further fine-tune the model, we integrate a human-based feedback system where the user selects the best formal sentence out of the ones generated by the model. The resulting evaluations of our solution exhibit similar to improved scores in formality and meaning preservation to state-of-the-art approaches.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-27T02:41:26Z
dc.date.available.none.fl_str_mv 2023-11-27T02:41:26Z
dc.date.issued.fl_str_mv 2023-09-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1016/j.egyr.2023.05.261
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/669463
dc.identifier.eissn.none.fl_str_mv 23524847
dc.identifier.journal.es_PE.fl_str_mv Energy Reports
dc.identifier.eid.none.fl_str_mv 2-s2.0-85161709562
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85161709562
dc.identifier.pii.none.fl_str_mv S2352484723010053
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.1016/j.egyr.2023.05.261
23524847
Energy Reports
2-s2.0-85161709562
SCOPUS_ID:85161709562
S2352484723010053
0000 0001 2196 144X
url http://hdl.handle.net/10757/669463
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://link.springer.com/article/10.1007/s42979-023-02110-7
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Springer
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Académico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Energy Reports
dc.source.volume.none.fl_str_mv 9
dc.source.beginpage.none.fl_str_mv 312
dc.source.endpage.none.fl_str_mv 321
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/5/1-s2.0-S2352484723010053-main.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/4/1-s2.0-S2352484723010053-main.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/3/1-s2.0-S2352484723010053-main.pdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/2/license.txt
bitstream.checksum.fl_str_mv e248454f8cb122e175c0c623830af116
f16560aa9b5ccdcc2853676a833b214d
a5e25ebcef33cb0d9d253c6694b0c661
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837186815885312000
spelling 8d80ca79936bd104e801c37cf532530130042c95d56f51eb114e52708484fe548153005520048107bb0239571bec565fb73a27300c0cb04e75f675e8dfcb6584501103b36500Flores, Marco A.Serrano, Fernando E.Cadena, CarlosAlvarez, Jose C.2023-11-27T02:41:26Z2023-11-27T02:41:26Z2023-09-0110.1016/j.egyr.2023.05.261http://hdl.handle.net/10757/66946323524847Energy Reports2-s2.0-85161709562SCOPUS_ID:85161709562S23524847230100530000 0001 2196 144XStyle transfer is a natural language processing generation task, it consists of substituting one given writing style for another one. In this work, we seek to perform informal-to-formal style transfers in the English language by using a style transfer model that takes advantage of the GPT-2. This process is shown in our web interface where the user input a informal message by text or voice. Our target audience are students and professionals in the need to improve the quality of their work by formalizing their texts. A style transfer is considered successful when the original semantic meaning of the message is preserved after the independent style has been replaced with a formal one with a high degree of grammatical correctness. This task is hindered by the scarcity of training and evaluation datasets alongside the lack of metrics. To accomplish this task, we opted to utilize OpenAI’s GPT-2 Transformer-based pre-trained model. To adapt the GPT-2 to our research, we fine-tuned the model with a parallel corpus containing informal text entries paired with the equivalent formal ones. We evaluate the fine-tuned model results with two specific metrics, formality and meaning preservation. To further fine-tune the model, we integrate a human-based feedback system where the user selects the best formal sentence out of the ones generated by the model. The resulting evaluations of our solution exhibit similar to improved scores in formality and meaning preservation to state-of-the-art approaches.Institute of Nuclear Energy ResearchODS 7: Energía Asequible y No ContaminanteODS 9: Industria, Innovación e InfraestructuraODS 13: Acción por el Climaapplication/pdfengSpringerhttps://link.springer.com/article/10.1007/s42979-023-02110-7info:eu-repo/semantics/openAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCEnergy Reports9312321reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCAnalysisClusteringDigital image processingRenewable energiesSolar energyThermographic imageThermographic image processing analysis in a solar concentrator with hard C-means clusteringinfo:eu-repo/semantics/article2023-11-27T02:41:28ZTHUMBNAIL1-s2.0-S2352484723010053-main.pdf.jpg1-s2.0-S2352484723010053-main.pdf.jpgGenerated Thumbnailimage/jpeg93193https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/5/1-s2.0-S2352484723010053-main.pdf.jpge248454f8cb122e175c0c623830af116MD55falseTEXT1-s2.0-S2352484723010053-main.pdf.txt1-s2.0-S2352484723010053-main.pdf.txtExtracted texttext/plain27005https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/4/1-s2.0-S2352484723010053-main.pdf.txtf16560aa9b5ccdcc2853676a833b214dMD54falseORIGINAL1-s2.0-S2352484723010053-main.pdf1-s2.0-S2352484723010053-main.pdfapplication/pdf1692162https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/3/1-s2.0-S2352484723010053-main.pdfa5e25ebcef33cb0d9d253c6694b0c661MD53trueLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52false10757/669463oai:repositorioacademico.upc.edu.pe:10757/6694632024-07-20 10:19:30.089Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).