Thermographic image processing analysis in a solar concentrator with hard C-means clustering
Descripción del Articulo
Style transfer is a natural language processing generation task, it consists of substituting one given writing style for another one. In this work, we seek to perform informal-to-formal style transfers in the English language by using a style transfer model that takes advantage of the GPT-2. This pr...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/669463 |
Enlace del recurso: | http://hdl.handle.net/10757/669463 |
Nivel de acceso: | acceso abierto |
Materia: | Analysis Clustering Digital image processing Renewable energies Solar energy Thermographic image |
id |
UUPC_5fbddf7a46138d9dbb1e0911f516e3b8 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/669463 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Thermographic image processing analysis in a solar concentrator with hard C-means clustering |
title |
Thermographic image processing analysis in a solar concentrator with hard C-means clustering |
spellingShingle |
Thermographic image processing analysis in a solar concentrator with hard C-means clustering Flores, Marco A. Analysis Clustering Digital image processing Renewable energies Solar energy Thermographic image |
title_short |
Thermographic image processing analysis in a solar concentrator with hard C-means clustering |
title_full |
Thermographic image processing analysis in a solar concentrator with hard C-means clustering |
title_fullStr |
Thermographic image processing analysis in a solar concentrator with hard C-means clustering |
title_full_unstemmed |
Thermographic image processing analysis in a solar concentrator with hard C-means clustering |
title_sort |
Thermographic image processing analysis in a solar concentrator with hard C-means clustering |
author |
Flores, Marco A. |
author_facet |
Flores, Marco A. Serrano, Fernando E. Cadena, Carlos Alvarez, Jose C. |
author_role |
author |
author2 |
Serrano, Fernando E. Cadena, Carlos Alvarez, Jose C. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Flores, Marco A. Serrano, Fernando E. Cadena, Carlos Alvarez, Jose C. |
dc.subject.es_PE.fl_str_mv |
Analysis Clustering Digital image processing Renewable energies Solar energy Thermographic image |
topic |
Analysis Clustering Digital image processing Renewable energies Solar energy Thermographic image |
description |
Style transfer is a natural language processing generation task, it consists of substituting one given writing style for another one. In this work, we seek to perform informal-to-formal style transfers in the English language by using a style transfer model that takes advantage of the GPT-2. This process is shown in our web interface where the user input a informal message by text or voice. Our target audience are students and professionals in the need to improve the quality of their work by formalizing their texts. A style transfer is considered successful when the original semantic meaning of the message is preserved after the independent style has been replaced with a formal one with a high degree of grammatical correctness. This task is hindered by the scarcity of training and evaluation datasets alongside the lack of metrics. To accomplish this task, we opted to utilize OpenAI’s GPT-2 Transformer-based pre-trained model. To adapt the GPT-2 to our research, we fine-tuned the model with a parallel corpus containing informal text entries paired with the equivalent formal ones. We evaluate the fine-tuned model results with two specific metrics, formality and meaning preservation. To further fine-tune the model, we integrate a human-based feedback system where the user selects the best formal sentence out of the ones generated by the model. The resulting evaluations of our solution exhibit similar to improved scores in formality and meaning preservation to state-of-the-art approaches. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-11-27T02:41:26Z |
dc.date.available.none.fl_str_mv |
2023-11-27T02:41:26Z |
dc.date.issued.fl_str_mv |
2023-09-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.egyr.2023.05.261 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/669463 |
dc.identifier.eissn.none.fl_str_mv |
23524847 |
dc.identifier.journal.es_PE.fl_str_mv |
Energy Reports |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85161709562 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85161709562 |
dc.identifier.pii.none.fl_str_mv |
S2352484723010053 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
10.1016/j.egyr.2023.05.261 23524847 Energy Reports 2-s2.0-85161709562 SCOPUS_ID:85161709562 S2352484723010053 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/669463 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://link.springer.com/article/10.1007/s42979-023-02110-7 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Springer |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Académico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Energy Reports |
dc.source.volume.none.fl_str_mv |
9 |
dc.source.beginpage.none.fl_str_mv |
312 |
dc.source.endpage.none.fl_str_mv |
321 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/5/1-s2.0-S2352484723010053-main.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/4/1-s2.0-S2352484723010053-main.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/3/1-s2.0-S2352484723010053-main.pdf https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/2/license.txt |
bitstream.checksum.fl_str_mv |
e248454f8cb122e175c0c623830af116 f16560aa9b5ccdcc2853676a833b214d a5e25ebcef33cb0d9d253c6694b0c661 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837186815885312000 |
spelling |
8d80ca79936bd104e801c37cf532530130042c95d56f51eb114e52708484fe548153005520048107bb0239571bec565fb73a27300c0cb04e75f675e8dfcb6584501103b36500Flores, Marco A.Serrano, Fernando E.Cadena, CarlosAlvarez, Jose C.2023-11-27T02:41:26Z2023-11-27T02:41:26Z2023-09-0110.1016/j.egyr.2023.05.261http://hdl.handle.net/10757/66946323524847Energy Reports2-s2.0-85161709562SCOPUS_ID:85161709562S23524847230100530000 0001 2196 144XStyle transfer is a natural language processing generation task, it consists of substituting one given writing style for another one. In this work, we seek to perform informal-to-formal style transfers in the English language by using a style transfer model that takes advantage of the GPT-2. This process is shown in our web interface where the user input a informal message by text or voice. Our target audience are students and professionals in the need to improve the quality of their work by formalizing their texts. A style transfer is considered successful when the original semantic meaning of the message is preserved after the independent style has been replaced with a formal one with a high degree of grammatical correctness. This task is hindered by the scarcity of training and evaluation datasets alongside the lack of metrics. To accomplish this task, we opted to utilize OpenAI’s GPT-2 Transformer-based pre-trained model. To adapt the GPT-2 to our research, we fine-tuned the model with a parallel corpus containing informal text entries paired with the equivalent formal ones. We evaluate the fine-tuned model results with two specific metrics, formality and meaning preservation. To further fine-tune the model, we integrate a human-based feedback system where the user selects the best formal sentence out of the ones generated by the model. The resulting evaluations of our solution exhibit similar to improved scores in formality and meaning preservation to state-of-the-art approaches.Institute of Nuclear Energy ResearchODS 7: Energía Asequible y No ContaminanteODS 9: Industria, Innovación e InfraestructuraODS 13: Acción por el Climaapplication/pdfengSpringerhttps://link.springer.com/article/10.1007/s42979-023-02110-7info:eu-repo/semantics/openAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCEnergy Reports9312321reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCAnalysisClusteringDigital image processingRenewable energiesSolar energyThermographic imageThermographic image processing analysis in a solar concentrator with hard C-means clusteringinfo:eu-repo/semantics/article2023-11-27T02:41:28ZTHUMBNAIL1-s2.0-S2352484723010053-main.pdf.jpg1-s2.0-S2352484723010053-main.pdf.jpgGenerated Thumbnailimage/jpeg93193https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/5/1-s2.0-S2352484723010053-main.pdf.jpge248454f8cb122e175c0c623830af116MD55falseTEXT1-s2.0-S2352484723010053-main.pdf.txt1-s2.0-S2352484723010053-main.pdf.txtExtracted texttext/plain27005https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/4/1-s2.0-S2352484723010053-main.pdf.txtf16560aa9b5ccdcc2853676a833b214dMD54falseORIGINAL1-s2.0-S2352484723010053-main.pdf1-s2.0-S2352484723010053-main.pdfapplication/pdf1692162https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/3/1-s2.0-S2352484723010053-main.pdfa5e25ebcef33cb0d9d253c6694b0c661MD53trueLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/669463/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52false10757/669463oai:repositorioacademico.upc.edu.pe:10757/6694632024-07-20 10:19:30.089Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).