Thermographic image processing analysis in a solar concentrator with hard C-means clustering

Descripción del Articulo

Style transfer is a natural language processing generation task, it consists of substituting one given writing style for another one. In this work, we seek to perform informal-to-formal style transfers in the English language by using a style transfer model that takes advantage of the GPT-2. This pr...

Descripción completa

Detalles Bibliográficos
Autores: Flores, Marco A., Serrano, Fernando E., Cadena, Carlos, Alvarez, Jose C.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/669463
Enlace del recurso:http://hdl.handle.net/10757/669463
Nivel de acceso:acceso abierto
Materia:Analysis
Clustering
Digital image processing
Renewable energies
Solar energy
Thermographic image
Descripción
Sumario:Style transfer is a natural language processing generation task, it consists of substituting one given writing style for another one. In this work, we seek to perform informal-to-formal style transfers in the English language by using a style transfer model that takes advantage of the GPT-2. This process is shown in our web interface where the user input a informal message by text or voice. Our target audience are students and professionals in the need to improve the quality of their work by formalizing their texts. A style transfer is considered successful when the original semantic meaning of the message is preserved after the independent style has been replaced with a formal one with a high degree of grammatical correctness. This task is hindered by the scarcity of training and evaluation datasets alongside the lack of metrics. To accomplish this task, we opted to utilize OpenAI’s GPT-2 Transformer-based pre-trained model. To adapt the GPT-2 to our research, we fine-tuned the model with a parallel corpus containing informal text entries paired with the equivalent formal ones. We evaluate the fine-tuned model results with two specific metrics, formality and meaning preservation. To further fine-tune the model, we integrate a human-based feedback system where the user selects the best formal sentence out of the ones generated by the model. The resulting evaluations of our solution exhibit similar to improved scores in formality and meaning preservation to state-of-the-art approaches.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).