Real-Time Retargeting of Human Poses from Monocular Images and Videos to the NAO Robot

Descripción del Articulo

To this point, there has been extensive research investigating human-robot motion retargeting, but the vast majority of existing methods rely on sensors or multiple cameras to detect human poses and movements, while many other methods are not suitable for usage on real-time scenarios. The current pa...

Descripción completa

Detalles Bibliográficos
Autores: Burga, Oscar, Villegas, Jonathan, Ugarte, Willy
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676113
Enlace del recurso:http://hdl.handle.net/10757/676113
Nivel de acceso:acceso embargado
Materia:Geometry
Human pose estimation
Humanoid robot
Motion retargeting
Vectors
id UUPC_38873f177df8c2adac8edff3b98b5c1a
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676113
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Real-Time Retargeting of Human Poses from Monocular Images and Videos to the NAO Robot
title Real-Time Retargeting of Human Poses from Monocular Images and Videos to the NAO Robot
spellingShingle Real-Time Retargeting of Human Poses from Monocular Images and Videos to the NAO Robot
Burga, Oscar
Geometry
Human pose estimation
Humanoid robot
Motion retargeting
Vectors
title_short Real-Time Retargeting of Human Poses from Monocular Images and Videos to the NAO Robot
title_full Real-Time Retargeting of Human Poses from Monocular Images and Videos to the NAO Robot
title_fullStr Real-Time Retargeting of Human Poses from Monocular Images and Videos to the NAO Robot
title_full_unstemmed Real-Time Retargeting of Human Poses from Monocular Images and Videos to the NAO Robot
title_sort Real-Time Retargeting of Human Poses from Monocular Images and Videos to the NAO Robot
author Burga, Oscar
author_facet Burga, Oscar
Villegas, Jonathan
Ugarte, Willy
author_role author
author2 Villegas, Jonathan
Ugarte, Willy
author2_role author
author
dc.contributor.author.fl_str_mv Burga, Oscar
Villegas, Jonathan
Ugarte, Willy
dc.subject.es_PE.fl_str_mv Geometry
Human pose estimation
Humanoid robot
Motion retargeting
Vectors
topic Geometry
Human pose estimation
Humanoid robot
Motion retargeting
Vectors
description To this point, there has been extensive research investigating human-robot motion retargeting, but the vast majority of existing methods rely on sensors or multiple cameras to detect human poses and movements, while many other methods are not suitable for usage on real-time scenarios. The current paper presents an integrated solution for performing realtime human-to-robot pose retargeting utilizing only regular monocular images and video as input data. We use deep learning models to perform three-dimensional human pose estimation on the monocular images and video, after which we calculate a set of joint angles that the robot must utilize to reproduce the detected human pose as accurately as possible. We evaluate our solution on Softbank’s NAO robot and show that it is possible to reproduce promising approximations and imitations of human motions and poses on the NAO robot, although it is subject to the limitations imposed by the robot’s degrees of freedom, joint constraints, and movement speed limitations. Category: Real-Time Systems
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-14T17:05:06Z
dc.date.available.none.fl_str_mv 2024-10-14T17:05:06Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 19764677
dc.identifier.doi.none.fl_str_mv 10.5626/JCSE.2024.18.1.47
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676113
dc.identifier.eissn.none.fl_str_mv 20938020
dc.identifier.journal.es_PE.fl_str_mv Journal of Computing Science and Engineering
dc.identifier.eid.none.fl_str_mv 2-s2.0-85195078940
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85195078940
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 19764677
10.5626/JCSE.2024.18.1.47
20938020
Journal of Computing Science and Engineering
2-s2.0-85195078940
SCOPUS_ID:85195078940
0000 0001 2196 144X
url http://hdl.handle.net/10757/676113
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Korean Institute of Information Scientists and Engineers
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Académico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Journal of Computing Science and Engineering
dc.source.volume.none.fl_str_mv 18
dc.source.issue.none.fl_str_mv 1
dc.source.beginpage.none.fl_str_mv 47
dc.source.endpage.none.fl_str_mv 56
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676113/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187183411200000
spelling 951111b32d9f844746bf06f7214e1753300cf65483c181a0c94ec152a0130d30bf6300533fd7e68213307170565ef90452257a500Burga, OscarVillegas, JonathanUgarte, Willy2024-10-14T17:05:06Z2024-10-14T17:05:06Z2024-01-011976467710.5626/JCSE.2024.18.1.47http://hdl.handle.net/10757/67611320938020Journal of Computing Science and Engineering2-s2.0-85195078940SCOPUS_ID:851950789400000 0001 2196 144XTo this point, there has been extensive research investigating human-robot motion retargeting, but the vast majority of existing methods rely on sensors or multiple cameras to detect human poses and movements, while many other methods are not suitable for usage on real-time scenarios. The current paper presents an integrated solution for performing realtime human-to-robot pose retargeting utilizing only regular monocular images and video as input data. We use deep learning models to perform three-dimensional human pose estimation on the monocular images and video, after which we calculate a set of joint angles that the robot must utilize to reproduce the detected human pose as accurately as possible. We evaluate our solution on Softbank’s NAO robot and show that it is possible to reproduce promising approximations and imitations of human motions and poses on the NAO robot, although it is subject to the limitations imposed by the robot’s degrees of freedom, joint constraints, and movement speed limitations. Category: Real-Time Systemsapplication/htmlengKorean Institute of Information Scientists and Engineersinfo:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCJournal of Computing Science and Engineering1814756reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCGeometryHuman pose estimationHumanoid robotMotion retargetingVectorsReal-Time Retargeting of Human Poses from Monocular Images and Videos to the NAO Robotinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676113/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676113oai:repositorioacademico.upc.edu.pe:10757/6761132024-10-14 17:05:07.926Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).