Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring
Descripción del Articulo
The accelerated deterioration of roads is conditioned by parameters such as climate change, poor construction, and heavy vehicle traffic. Two relevant measures to monitor the condition of a road are the International Roughness Index (IRI) and the number of functional failures in a segment, mainly po...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/675850 |
Enlace del recurso: | http://hdl.handle.net/10757/675850 |
Nivel de acceso: | acceso abierto |
Materia: | Pothole detection International Roughness Index (IRI) |
id |
UUPC_35f9dc5956464e251c906a29535de204 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/675850 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring |
title |
Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring |
spellingShingle |
Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring Guerra, Kevin Pothole detection International Roughness Index (IRI) |
title_short |
Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring |
title_full |
Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring |
title_fullStr |
Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring |
title_full_unstemmed |
Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring |
title_sort |
Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring |
author |
Guerra, Kevin |
author_facet |
Guerra, Kevin Raymundo, Carlos Silvera, Manuel Zapata, Gianpierre Moguerza, Javier M. |
author_role |
author |
author2 |
Raymundo, Carlos Silvera, Manuel Zapata, Gianpierre Moguerza, Javier M. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Guerra, Kevin Raymundo, Carlos Silvera, Manuel Zapata, Gianpierre Moguerza, Javier M. |
dc.subject.es_PE.fl_str_mv |
Pothole detection International Roughness Index (IRI) |
topic |
Pothole detection International Roughness Index (IRI) |
description |
The accelerated deterioration of roads is conditioned by parameters such as climate change, poor construction, and heavy vehicle traffic. Two relevant measures to monitor the condition of a road are the International Roughness Index (IRI) and the number of functional failures in a segment, mainly potholes, since they are associated with higher risks such as accidents or damage to vehicle mechanics. In the state of the art, pothole detection or International Roughness Index (IRI) calculation algorithms are proposed, but they use vehicles designed to produce less vibration and use phones that decrease the performance of the embedded sensors. In addition, some works propose complex algorithms of higher computational load that leads to use more hardware and power consumption. In this context, the present work aims to monitor the condition of a road through low-cost dedicated sensors implemented in an urban patrolling all-terrain vehicles (ATVs), where energy consumption is optimized using low-complexity signal processing techniques for noise reduction and detection algorithms. The results show an average accuracy of 90.5% in the detection of potholes, a relative error of 8.41% in the calculation of the International Roughness Index (IRI) and an average reduction of 65.4% in the monitoring time. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-24T13:09:22Z |
dc.date.available.none.fl_str_mv |
2024-09-24T13:09:22Z |
dc.date.issued.fl_str_mv |
2024-12-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.1038/s41598-024-70936-z |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/675850 |
dc.identifier.eissn.none.fl_str_mv |
20452322 |
dc.identifier.journal.es_PE.fl_str_mv |
Scientific Reports |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85202037578 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85202037578 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
10.1038/s41598-024-70936-z 20452322 Scientific Reports 2-s2.0-85202037578 SCOPUS_ID:85202037578 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/675850 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Scientific Reports |
dc.source.volume.none.fl_str_mv |
14 |
dc.source.issue.none.fl_str_mv |
1 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/675850/5/s41598-024-70936-z.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/675850/4/s41598-024-70936-z.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/675850/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/675850/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/675850/1/s41598-024-70936-z.pdf |
bitstream.checksum.fl_str_mv |
b686a94c33c2a456bcc19d816f14ed45 332c464d9f2ff18237487567dfd430c0 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 4b2461126a708c39728dcc5c9d08c97f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1845513835254906880 |
spelling |
b71a1957eee7489a5f9a6d0b7c008810500f1b29165990ab4ce165cbf28f5e4ccd95001e49e36f63cc95f69681da39223d240d50096d2763741e53bc8b4928f0aa96e9bfa500eab45c535b46774d53b19b94802aaba8500Guerra, KevinRaymundo, CarlosSilvera, ManuelZapata, GianpierreMoguerza, Javier M.2024-09-24T13:09:22Z2024-09-24T13:09:22Z2024-12-0110.1038/s41598-024-70936-zhttp://hdl.handle.net/10757/67585020452322Scientific Reports2-s2.0-85202037578SCOPUS_ID:852020375780000 0001 2196 144XThe accelerated deterioration of roads is conditioned by parameters such as climate change, poor construction, and heavy vehicle traffic. Two relevant measures to monitor the condition of a road are the International Roughness Index (IRI) and the number of functional failures in a segment, mainly potholes, since they are associated with higher risks such as accidents or damage to vehicle mechanics. In the state of the art, pothole detection or International Roughness Index (IRI) calculation algorithms are proposed, but they use vehicles designed to produce less vibration and use phones that decrease the performance of the embedded sensors. In addition, some works propose complex algorithms of higher computational load that leads to use more hardware and power consumption. In this context, the present work aims to monitor the condition of a road through low-cost dedicated sensors implemented in an urban patrolling all-terrain vehicles (ATVs), where energy consumption is optimized using low-complexity signal processing techniques for noise reduction and detection algorithms. The results show an average accuracy of 90.5% in the detection of potholes, a relative error of 8.41% in the calculation of the International Roughness Index (IRI) and an average reduction of 65.4% in the monitoring time.application/pdfengNature Researchinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Pothole detectionInternational Roughness Index (IRI)Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoringinfo:eu-repo/semantics/articleScientific Reports141reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2024-09-24T13:09:24ZTHUMBNAILs41598-024-70936-z.pdf.jpgs41598-024-70936-z.pdf.jpgGenerated Thumbnailimage/jpeg105789https://repositorioacademico.upc.edu.pe/bitstream/10757/675850/5/s41598-024-70936-z.pdf.jpgb686a94c33c2a456bcc19d816f14ed45MD55falseTEXTs41598-024-70936-z.pdf.txts41598-024-70936-z.pdf.txtExtracted texttext/plain44395https://repositorioacademico.upc.edu.pe/bitstream/10757/675850/4/s41598-024-70936-z.pdf.txt332c464d9f2ff18237487567dfd430c0MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/675850/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/675850/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINALs41598-024-70936-z.pdfs41598-024-70936-z.pdfapplication/pdf2627880https://repositorioacademico.upc.edu.pe/bitstream/10757/675850/1/s41598-024-70936-z.pdf4b2461126a708c39728dcc5c9d08c97fMD51true10757/675850oai:repositorioacademico.upc.edu.pe:10757/6758502024-09-25 07:08:20.444Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.424744 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).