Modelos homotópicos que representan la homotopía estable
Descripción del Articulo
En el presente trabajo desarrollamos el concepto de conjunto simplicial como herramienta fundamental en el desarrollo moderno de la topología algebraica, bajo un punto de vista categórico, que nos introduce a líneas como el álgebra homotópica, teoría categórica de homotopía, K-teoría de Quillen y A1...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2018 |
Institución: | Universidad Nacional de Ingeniería |
Repositorio: | UNI-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.uni.edu.pe:20.500.14076/18957 |
Enlace del recurso: | http://hdl.handle.net/20.500.14076/18957 |
Nivel de acceso: | acceso abierto |
Materia: | Teoría homotópica Topología algebraica Teorema B de Quillen https://purl.org/pe-repo/ocde/ford#1.01.02 |
Sumario: | En el presente trabajo desarrollamos el concepto de conjunto simplicial como herramienta fundamental en el desarrollo moderno de la topología algebraica, bajo un punto de vista categórico, que nos introduce a líneas como el álgebra homotópica, teoría categórica de homotopía, K-teoría de Quillen y A1-homotopía (donde esta última línea ligada también a la geometría algebraica). La categoría de conjuntos simpliciales representa una construcción algebraica que rescata las propiedades más importantes de los CW-complejos, sin hacer uso de topología, pero aludiendo siempre a ella. Esta categoría forma un clásico ejemplo de categoría de modelo cerrada, la cual estudiaremos para ofrecer un panorama general de los alcances del álgebra homotópica. Los resultados más importantes son el Teorema B de Quillen (base primordial de la K-teoría de Quillen), Teorema del Grupo de Compleción y la equivalencia del funtor producto simétrico infinito de Schlichtkrull con al funtor Γ de Barratt-Eccles, los cuales representan la homotopía estable. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).