Pymach y Sparkmach: sistemas de procesamiento de datos con dimensión variable usando algoritmos de Machine Learning

Descripción del Articulo

La presente tesis propone dos sistemas de análisis y predicción de datos enfocados a problemas relacionados al Machine Learning: Pymach y Sparkmach. Este sistema conjunto tiene el fin de reducir y automatizar los pasos convencionales que conlleva la creación de un modelo predictivo en general. Para...

Descripción completa

Detalles Bibliográficos
Autor: Bravo Rocca, Gusseppe Jesús
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/18949
Enlace del recurso:http://hdl.handle.net/20.500.14076/18949
Nivel de acceso:acceso abierto
Materia:Inteligencia artificial
Sistemas de procesamiento de datos
Pymach
https://purl.org/pe-repo/ocde/ford#1.02.01
Descripción
Sumario:La presente tesis propone dos sistemas de análisis y predicción de datos enfocados a problemas relacionados al Machine Learning: Pymach y Sparkmach. Este sistema conjunto tiene el fin de reducir y automatizar los pasos convencionales que conlleva la creación de un modelo predictivo en general. Para este fin se hace uso de técnicas de inteligencia artificial, particularmente, Machine Learning, para crear modelos a medida que puedan predecir eventos a futuro, en aplicaciones tales como, lugares y frecuencias de accidentes de tránsito, localización, tiempos de espera de autobuses, consumo de combustible, entre otros. Para ello, se ha trabajado con datos simulados y reales que, junto al sistema, se han desplegado en un clúster de CPUs. Debido a la ingente cantidad de datos, se ha trabaja- do con técnicas de paralelismo y Big Data para el procesamiento eficiente de los mismos. Finalmente, Pymach y Sparkmach, escrito en Python y PySpark respectivamente, están desplegadas en una aplicación web para la interacción con el usuario.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).