Different regressors for linear modelling of ElectroEncephaloGraphic recordings in visual and auditory tasks

Descripción del Articulo

The use of hierarchical linear modelling has been increasing in the last 5 years to analyze EEG data. Until now, no clear comparison on linear modelling in different modalities has been done. Therefore, specific differences observed in both visual and auditory paradigms were computed with linear mod...

Descripción completa

Detalles Bibliográficos
Autor: Mugruza Vassallo, Carlos
Formato: objeto de conferencia
Fecha de Publicación:2016
Institución:Universidad de Ciencias y Humanidades
Repositorio:UCH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uch.edu.pe:uch/323
Enlace del recurso:http://repositorio.uch.edu.pe/handle/uch/323
https://ieeexplore.ieee.org/document/7516270
http://dx.doi.org/10.1109/BSN.2016.7516270
Nivel de acceso:acceso embargado
Materia:Electroencephalography
Auditory modality
Auditory tasks
Coefficient of determination
Eeg datum
Visual modalities
Visual tasks
Body sensor networks
Descripción
Sumario:The use of hierarchical linear modelling has been increasing in the last 5 years to analyze EEG data. Until now, no clear comparison on linear modelling in different modalities has been done. Therefore, specific differences observed in both visual and auditory paradigms were computed with linear modelling. The Coefficient of Determination through the explained variance (R2) in Linear Modelling was sought in visual and auditory modalities. ERP scalp series of time from 100 to 300 ms for the visual task and around 150 ms to 400 for the auditory task were also plotted. Although these paradigms use different regressors, both paradigms showed reliable R2 signatures across the participants and reliable ERP scalp maps. Results accounted for different magnitudes in greater R2 values for visual modality. Auditory R2 results appeared with a reliable linear modelling when compared with R2 studies in other subjects.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).