Application of machine learning models for early detection and accurate classification of type 2 Diabetes

Descripción del Articulo

Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML model...

Descripción completa

Detalles Bibliográficos
Autores: Espinola Linares, Karina, Iparraguirre-Villanueva, Orlando, Flores Castañeda, Rosalynn Ornella, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7776
Enlace del recurso:https://hdl.handle.net/20.500.12867/7776
https://doi.org/10.3390/diagnostics13142383
Nivel de acceso:acceso abierto
Materia:Diabetes
Machine learning
Predictive modelling
https://purl.org/pe-repo/ocde/ford#3.00.00
https://purl.org/pe-repo/ocde/ford#1.02.00
id UTPD_46ddc32aadacc85c0a79ab300af42cdf
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/7776
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Application of machine learning models for early detection and accurate classification of type 2 Diabetes
title Application of machine learning models for early detection and accurate classification of type 2 Diabetes
spellingShingle Application of machine learning models for early detection and accurate classification of type 2 Diabetes
Espinola Linares, Karina
Diabetes
Machine learning
Predictive modelling
https://purl.org/pe-repo/ocde/ford#3.00.00
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Application of machine learning models for early detection and accurate classification of type 2 Diabetes
title_full Application of machine learning models for early detection and accurate classification of type 2 Diabetes
title_fullStr Application of machine learning models for early detection and accurate classification of type 2 Diabetes
title_full_unstemmed Application of machine learning models for early detection and accurate classification of type 2 Diabetes
title_sort Application of machine learning models for early detection and accurate classification of type 2 Diabetes
author Espinola Linares, Karina
author_facet Espinola Linares, Karina
Iparraguirre-Villanueva, Orlando
Flores Castañeda, Rosalynn Ornella
Cabanillas-Carbonell, Michael
author_role author
author2 Iparraguirre-Villanueva, Orlando
Flores Castañeda, Rosalynn Ornella
Cabanillas-Carbonell, Michael
author2_role author
author
author
dc.contributor.author.fl_str_mv Espinola Linares, Karina
Iparraguirre-Villanueva, Orlando
Flores Castañeda, Rosalynn Ornella
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Diabetes
Machine learning
Predictive modelling
topic Diabetes
Machine learning
Predictive modelling
https://purl.org/pe-repo/ocde/ford#3.00.00
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.00.00
https://purl.org/pe-repo/ocde/ford#1.02.00
description Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-25T20:55:22Z
dc.date.available.none.fl_str_mv 2023-10-25T20:55:22Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2075-4418
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/7776
dc.identifier.journal.es_PE.fl_str_mv Diagnostics
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/diagnostics13142383
identifier_str_mv 2075-4418
Diagnostics
url https://hdl.handle.net/20.500.12867/7776
https://doi.org/10.3390/diagnostics13142383
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Diagnostics;vol. 13, n° 4
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/7776/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7776/1/K.Espinoza_Articulo_2023.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7776/3/K.Espinoza_Articulo_2023.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7776/4/K.Espinoza_Articulo_2023.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
e86dc57d02b18ce4868a623f35cd1417
29f244577ab41c279b60d5690a8442b4
6433d8d07a0d8faf40a095c9778b39fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984957621993472
spelling Espinola Linares, KarinaIparraguirre-Villanueva, OrlandoFlores Castañeda, Rosalynn OrnellaCabanillas-Carbonell, Michael2023-10-25T20:55:22Z2023-10-25T20:55:22Z20232075-4418https://hdl.handle.net/20.500.12867/7776Diagnosticshttps://doi.org/10.3390/diagnostics13142383Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising.Campus Chimboteapplication/pdfengMultidisciplinary Digital Publishing InstituteCHDiagnostics;vol. 13, n° 4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPDiabetesMachine learningPredictive modellinghttps://purl.org/pe-repo/ocde/ford#3.00.00https://purl.org/pe-repo/ocde/ford#1.02.00Application of machine learning models for early detection and accurate classification of type 2 Diabetesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/7776/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALK.Espinoza_Articulo_2023.pdfK.Espinoza_Articulo_2023.pdfapplication/pdf3181728http://repositorio.utp.edu.pe/bitstream/20.500.12867/7776/1/K.Espinoza_Articulo_2023.pdfe86dc57d02b18ce4868a623f35cd1417MD51TEXTK.Espinoza_Articulo_2023.pdf.txtK.Espinoza_Articulo_2023.pdf.txtExtracted texttext/plain65038http://repositorio.utp.edu.pe/bitstream/20.500.12867/7776/3/K.Espinoza_Articulo_2023.pdf.txt29f244577ab41c279b60d5690a8442b4MD53THUMBNAILK.Espinoza_Articulo_2023.pdf.jpgK.Espinoza_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg23730http://repositorio.utp.edu.pe/bitstream/20.500.12867/7776/4/K.Espinoza_Articulo_2023.pdf.jpg6433d8d07a0d8faf40a095c9778b39fbMD5420.500.12867/7776oai:repositorio.utp.edu.pe:20.500.12867/77762023-10-25 17:04:34.463Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.882472
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).