Comparison of predictive machine learning models to predict the level of adaptability of students in online education

Descripción del Articulo

With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for studen...

Descripción completa

Detalles Bibliográficos
Autores: Epifanía Huerta, Andrés David, Iparraguirre-Villanueva, Orlando, Torres-Ceclén, Carmen, Castro-Leon, Gloria, Melgarejo-Graciano, Melquiades, Zapata-Paulini, Joselyn, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7211
Enlace del recurso:https://hdl.handle.net/20.500.12867/7211
https://doi.org/10.14569/IJACSA.2023.0140455
Nivel de acceso:acceso abierto
Materia:Machine learning
Predictive modelling
University students
Virtual education
https://purl.org/pe-repo/ocde/ford#5.03.01
id UTPD_465a927182aa8ef162e057c0285a9d84
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/7211
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Comparison of predictive machine learning models to predict the level of adaptability of students in online education
title Comparison of predictive machine learning models to predict the level of adaptability of students in online education
spellingShingle Comparison of predictive machine learning models to predict the level of adaptability of students in online education
Epifanía Huerta, Andrés David
Machine learning
Predictive modelling
University students
Virtual education
https://purl.org/pe-repo/ocde/ford#5.03.01
title_short Comparison of predictive machine learning models to predict the level of adaptability of students in online education
title_full Comparison of predictive machine learning models to predict the level of adaptability of students in online education
title_fullStr Comparison of predictive machine learning models to predict the level of adaptability of students in online education
title_full_unstemmed Comparison of predictive machine learning models to predict the level of adaptability of students in online education
title_sort Comparison of predictive machine learning models to predict the level of adaptability of students in online education
author Epifanía Huerta, Andrés David
author_facet Epifanía Huerta, Andrés David
Iparraguirre-Villanueva, Orlando
Torres-Ceclén, Carmen
Castro-Leon, Gloria
Melgarejo-Graciano, Melquiades
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author_role author
author2 Iparraguirre-Villanueva, Orlando
Torres-Ceclén, Carmen
Castro-Leon, Gloria
Melgarejo-Graciano, Melquiades
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Epifanía Huerta, Andrés David
Iparraguirre-Villanueva, Orlando
Torres-Ceclén, Carmen
Castro-Leon, Gloria
Melgarejo-Graciano, Melquiades
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Machine learning
Predictive modelling
University students
Virtual education
topic Machine learning
Predictive modelling
University students
Virtual education
https://purl.org/pe-repo/ocde/ford#5.03.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.03.01
description With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), K-Nearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-25T20:58:08Z
dc.date.available.none.fl_str_mv 2023-07-25T20:58:08Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2156-5570
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/7211
dc.identifier.journal.es_PE.fl_str_mv International Journal of Advanced Computer Science and Applications
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14569/IJACSA.2023.0140455
identifier_str_mv 2156-5570
International Journal of Advanced Computer Science and Applications
url https://hdl.handle.net/20.500.12867/7211
https://doi.org/10.14569/IJACSA.2023.0140455
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv International Journal of Advanced Computer Science and Applications;vol. 14, n° 4
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv The Science and Information Organization
dc.publisher.country.es_PE.fl_str_mv GB
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/1/A.Epifania_Articulo_2023.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/3/A.Epifania_Articulo_2023.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/4/A.Epifania_Articulo_2023.pdf.jpg
bitstream.checksum.fl_str_mv b19ebff3f643b3c6babad70caece3b34
8a4605be74aa9ea9d79846c1fba20a33
ffcbb8229a2d741a7794d8b1395727b2
8f1369f5593a6df25295fc9cf4e0971e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984844050726912
spelling Epifanía Huerta, Andrés DavidIparraguirre-Villanueva, OrlandoTorres-Ceclén, CarmenCastro-Leon, GloriaMelgarejo-Graciano, MelquiadesZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-07-25T20:58:08Z2023-07-25T20:58:08Z20232156-5570https://hdl.handle.net/20.500.12867/7211International Journal of Advanced Computer Science and Applicationshttps://doi.org/10.14569/IJACSA.2023.0140455With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), K-Nearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels.Campus Chimboteapplication/pdfspaThe Science and Information OrganizationGBInternational Journal of Advanced Computer Science and Applications;vol. 14, n° 4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningPredictive modellingUniversity studentsVirtual educationhttps://purl.org/pe-repo/ocde/ford#5.03.01Comparison of predictive machine learning models to predict the level of adaptability of students in online educationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALA.Epifania_Articulo_2023.pdfA.Epifania_Articulo_2023.pdfapplication/pdf909923http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/1/A.Epifania_Articulo_2023.pdfb19ebff3f643b3c6babad70caece3b34MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA.Epifania_Articulo_2023.pdf.txtA.Epifania_Articulo_2023.pdf.txtExtracted texttext/plain47283http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/3/A.Epifania_Articulo_2023.pdf.txtffcbb8229a2d741a7794d8b1395727b2MD53THUMBNAILA.Epifania_Articulo_2023.pdf.jpgA.Epifania_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg24227http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/4/A.Epifania_Articulo_2023.pdf.jpg8f1369f5593a6df25295fc9cf4e0971eMD5420.500.12867/7211oai:repositorio.utp.edu.pe:20.500.12867/72112023-07-25 17:03:55.603Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.982926
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).