Comparison of predictive machine learning models to predict the level of adaptability of students in online education
Descripción del Articulo
With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for studen...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/7211 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/7211 https://doi.org/10.14569/IJACSA.2023.0140455 |
Nivel de acceso: | acceso abierto |
Materia: | Machine learning Predictive modelling University students Virtual education https://purl.org/pe-repo/ocde/ford#5.03.01 |
id |
UTPD_465a927182aa8ef162e057c0285a9d84 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/7211 |
network_acronym_str |
UTPD |
network_name_str |
UTP-Institucional |
repository_id_str |
4782 |
dc.title.es_PE.fl_str_mv |
Comparison of predictive machine learning models to predict the level of adaptability of students in online education |
title |
Comparison of predictive machine learning models to predict the level of adaptability of students in online education |
spellingShingle |
Comparison of predictive machine learning models to predict the level of adaptability of students in online education Epifanía Huerta, Andrés David Machine learning Predictive modelling University students Virtual education https://purl.org/pe-repo/ocde/ford#5.03.01 |
title_short |
Comparison of predictive machine learning models to predict the level of adaptability of students in online education |
title_full |
Comparison of predictive machine learning models to predict the level of adaptability of students in online education |
title_fullStr |
Comparison of predictive machine learning models to predict the level of adaptability of students in online education |
title_full_unstemmed |
Comparison of predictive machine learning models to predict the level of adaptability of students in online education |
title_sort |
Comparison of predictive machine learning models to predict the level of adaptability of students in online education |
author |
Epifanía Huerta, Andrés David |
author_facet |
Epifanía Huerta, Andrés David Iparraguirre-Villanueva, Orlando Torres-Ceclén, Carmen Castro-Leon, Gloria Melgarejo-Graciano, Melquiades Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Iparraguirre-Villanueva, Orlando Torres-Ceclén, Carmen Castro-Leon, Gloria Melgarejo-Graciano, Melquiades Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Epifanía Huerta, Andrés David Iparraguirre-Villanueva, Orlando Torres-Ceclén, Carmen Castro-Leon, Gloria Melgarejo-Graciano, Melquiades Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
dc.subject.es_PE.fl_str_mv |
Machine learning Predictive modelling University students Virtual education |
topic |
Machine learning Predictive modelling University students Virtual education https://purl.org/pe-repo/ocde/ford#5.03.01 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.03.01 |
description |
With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), K-Nearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-25T20:58:08Z |
dc.date.available.none.fl_str_mv |
2023-07-25T20:58:08Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2156-5570 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/7211 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Advanced Computer Science and Applications |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14569/IJACSA.2023.0140455 |
identifier_str_mv |
2156-5570 International Journal of Advanced Computer Science and Applications |
url |
https://hdl.handle.net/20.500.12867/7211 https://doi.org/10.14569/IJACSA.2023.0140455 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.none.fl_str_mv |
International Journal of Advanced Computer Science and Applications;vol. 14, n° 4 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
The Science and Information Organization |
dc.publisher.country.es_PE.fl_str_mv |
GB |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
instname_str |
Universidad Tecnológica del Perú |
instacron_str |
UTP |
institution |
UTP |
reponame_str |
UTP-Institucional |
collection |
UTP-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/1/A.Epifania_Articulo_2023.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/3/A.Epifania_Articulo_2023.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/4/A.Epifania_Articulo_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
b19ebff3f643b3c6babad70caece3b34 8a4605be74aa9ea9d79846c1fba20a33 ffcbb8229a2d741a7794d8b1395727b2 8f1369f5593a6df25295fc9cf4e0971e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
_version_ |
1817984844050726912 |
spelling |
Epifanía Huerta, Andrés DavidIparraguirre-Villanueva, OrlandoTorres-Ceclén, CarmenCastro-Leon, GloriaMelgarejo-Graciano, MelquiadesZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-07-25T20:58:08Z2023-07-25T20:58:08Z20232156-5570https://hdl.handle.net/20.500.12867/7211International Journal of Advanced Computer Science and Applicationshttps://doi.org/10.14569/IJACSA.2023.0140455With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), K-Nearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels.Campus Chimboteapplication/pdfspaThe Science and Information OrganizationGBInternational Journal of Advanced Computer Science and Applications;vol. 14, n° 4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningPredictive modellingUniversity studentsVirtual educationhttps://purl.org/pe-repo/ocde/ford#5.03.01Comparison of predictive machine learning models to predict the level of adaptability of students in online educationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALA.Epifania_Articulo_2023.pdfA.Epifania_Articulo_2023.pdfapplication/pdf909923http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/1/A.Epifania_Articulo_2023.pdfb19ebff3f643b3c6babad70caece3b34MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA.Epifania_Articulo_2023.pdf.txtA.Epifania_Articulo_2023.pdf.txtExtracted texttext/plain47283http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/3/A.Epifania_Articulo_2023.pdf.txtffcbb8229a2d741a7794d8b1395727b2MD53THUMBNAILA.Epifania_Articulo_2023.pdf.jpgA.Epifania_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg24227http://repositorio.utp.edu.pe/bitstream/20.500.12867/7211/4/A.Epifania_Articulo_2023.pdf.jpg8f1369f5593a6df25295fc9cf4e0971eMD5420.500.12867/7211oai:repositorio.utp.edu.pe:20.500.12867/72112023-07-25 17:03:55.603Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.982926 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).