Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine

Descripción del Articulo

The objective of this study is to predict the quantity of ANFO required for bench blasting in an open pit mine in Peru, through the application of advanced machine learning techniques. Six models were selected: Artificial Neural Networks (ANNMLP), Random Forests (RF), Support Vector Machines for Reg...

Descripción completa

Detalles Bibliográficos
Autores: Quispe-Tello, Rosa Liliam, Donaires-Flores, Teofilo, Noriega-Vidal, Eduardo Manuel, Arango-Retamozo, Solio Marino, Gonzalez-Vasquez, Joe Alexis, Mamani-Quispe, Jose Nestor, Marquina-Araujo, Jairo Jhonatan, Cotrina-Teatino, Marco Antonio
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14525
Enlace del recurso:https://hdl.handle.net/20.500.12867/14525
https://doi.org/10.18280/mmep.111004
Nivel de acceso:acceso abierto
Materia:Machine learning techniques
Blasting
Open-pit mining
Explosives
https://purl.org/pe-repo/ocde/ford#2.02.01
Descripción
Sumario:The objective of this study is to predict the quantity of ANFO required for bench blasting in an open pit mine in Peru, through the application of advanced machine learning techniques. Six models were selected: Artificial Neural Networks (ANNMLP), Random Forests (RF), Support Vector Machines for Regression (SVR), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression (BR), due to their ability to handle complex multidimensional data and their success in similar applications, such as rock fragmentation prediction. The methodology included the collection of data from 208 drill holes, which were divided into training (70%), validation (15%), and testing (15%) sets. The models were evaluated using RMSE, MSE, MAE, and R2. The KNN model showed the best performance, with an R2 of 0.84, RMSE of 2.37, MSE of 5.60, and MAE of 1.35, standing out in predictive accuracy. This study contributes to the accurate prediction of the ANFO quantity required for bench blasting in open-pit mining, providing a useful tool for improving explosives management based on the specific characteristics of the terrain and operational conditions.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).